Skip to main content
Log in

Gene duplications and the evolution of c-type lysozyme during adaptive radiation of East African cichlid fish

  • ADVANCES IN CICHLID RESEARCH II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The adaptive radiation of African cichlids is a prime model system for studying vertebrate speciation. Cichlid species are distributed in lakes and rivers with various water conditions such as various pH values. The innate immune system in fish is particularly important because water contains a wide range of pathogenic microorganisms. To investigate the evolution of the host defense system in cichlids, we isolated the c-type lysozyme gene, which functions in the innate immune system of fish. Southern blot and sequence analyses showed that the lysozyme gene underwent several gene duplication events and evolved with amino acid replacements during the adaptive radiation of cichlids. The inferred 3D structure revealed that the amino acid substitutions were localized on the lysozyme surface. Moreover, more than half of the surface substitutions changed the charge of amino acid residues, suggesting changes in the optimum pH for enzymatic activity. In African cichlids, the lysozyme genes may have played and still play an important role in defense against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brawand, D., C. E. Wagner, Y. I. Li, M. Malinsky, I. Keller, S. Fan, O. Simakov, A. Y. Ng, Z. W. Lim, E. Bezault, J. Turner-Maier, J. Johnson, R. Alcazar, H. J. Noh, P. Russell, B. Aken, J. Alfoldi, C. Amemiya, N. Azzouzi, J. F. Baroiller, F. Barloy-Hubler, A. Berlin, R. Bloomquist, K. L. Carleton, M. A. Conte, H. D’Cotta, O. Eshel, L. Gaffney, F. Galibert, H. F. Gante, S. Gnerre, L. Greuter, R. Guyon, N. S. Haddad, W. Haerty, R. M. Harris, H. A. Hofmann, T. Hourlier, G. Hulata, D. B. Jaffe, M. Lara, A. P. Lee, I. MacCallum, S. Mwaiko, M. Nikaido, H. Nishihara, C. Ozouf-Costaz, D. J. Penman, D. Przybylski, M. Rakotomanga, S. C. Renn, F. J. Ribeiro, M. Ron, W. Salzburger, L. Sanchez-Pulido, M. E. Santos, S. Searle, T. Sharpe, R. Swofford, F. J. Tan, L. Williams, S. Young, S. Yin, N. Okada, T. D. Kocher, E. A. Miska, E. S. Lander, B. Venkatesh, R. D. Fernald, A. Meyer, C. P. Ponting, J. T. Streelman, K. Lindblad-Toh, O. Seehausen & F. Di Palma, 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callewaert, L. & C. W. Michiels, 2010. Lysozymes in the animal kingdom. Journal of Biosciences 35: 127–160.

    Article  CAS  PubMed  Google Scholar 

  • Clabaut, C., W. Salzburger & A. Meyer, 2005. Comparative phylogenetic analyses of the adaptive radiation in Lake Tanganyika cichlid fishes: nuclear sequences are less homoplasious but also less informative than mitochondrial DNA. Journal of Molecular Evolution 31: 666–681.

    Article  Google Scholar 

  • Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift system. Geology 21: 511–514.

    Article  CAS  Google Scholar 

  • Cohen, A. S., K. E. Lezzar, J. J. Tiercelin & M. Soreghan, 1997. New palaeogeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Research 9: 107–132.

    Article  Google Scholar 

  • Conant, G. C. & K. H. Wolfe, 2008. Turning a hobby into a job: how duplicated genes find new functions. Nature Reviews Genetics 9: 938–950.

    Article  CAS  PubMed  Google Scholar 

  • Coulter, G. W., 1991. The Benthic Fish Community. Oxford University Press, London.

    Google Scholar 

  • Delvaux, D., 1995. Age of Lake Malawi (Nyasa) and Water Level Fluctuations. Muses Royal de l’Afrique Centrale, Tervuren (Belgium), Department of Geology and Mineralogy, Rapp Annual: 99–108.

  • Dobson, D. E., E. M. Prager & A. C. Wilson, 1984. Stomach lysozyme of ruminants. Journal of Biological Chemistry 259: 11607–11616.

    CAS  PubMed  Google Scholar 

  • Friedman, M., B. P. Keck, A. Dornburg, R. I. Eytan, C. H. Martin, C. D. Hulsey, P. C. Wainwright & T. J. Near, 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings of the Royal Society of London B: Biological Sciences 280: 20131733.

    Article  Google Scholar 

  • Fryer, G. & T. D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282.

    Article  CAS  PubMed  Google Scholar 

  • Hikima, J.-I., S. Minagawa, I. Hirono & T. Aoki, 2001. Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochimica Biophysica Acta 1520: 35–44.

    Article  CAS  Google Scholar 

  • Irwin, D. M., 1995. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function. Journal of Molecular Evolution 41: 299–312.

    Article  CAS  PubMed  Google Scholar 

  • Irwin, D. M., E. M. Prager & A. C. Wilson, 1992. Evolutionary genetics of ruminant lysozymes. Animal Genetics 23: 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, T. C., C. A. Scholz, M. R. Talbot, K. Kelts, R. D. Ricketts, G. Ngobi, K. Beuning, I. I. Ssemmanda & J. W. McGill, 1996. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273: 1091–1093.

    Article  CAS  PubMed  Google Scholar 

  • Jolles, J., E. M. Prager, E. S. Alnemri, P. Jolles, I. M. Ibrahimi & A. C. Wilson, 1990. Amino-acid-sequences of stomach and nonstomach lysozymes of ruminants. Journal of Molecular Evolution 30: 370–382.

    Article  CAS  PubMed  Google Scholar 

  • Jolles, J., A. Fiala-Medioni & P. Jolles, 1996. The ruminant digestion model using bacteria already employed early in evolution by symbiotic molluscs. Journal of Molecular Evolution 43: 523–527.

    Article  CAS  PubMed  Google Scholar 

  • Klein, D., H. Ono, C. O’hUigin, V. Vincek, T. Goldschmidt & J. Klein, 1993. Extensive MHC variability in cichlid fishes of Lake Malawi. Nature 364: 330–334.

    Article  CAS  PubMed  Google Scholar 

  • Koblmuller, S., U. K. Schliewen, N. Duftner, K. M. Sefc, C. Katongo & C. Sturmbauer, 2008a. Age and spread of the haplochromine cichlid fishes in Africa. Molecular Phylogenetics and Evolution 49: 153–169.

    Article  PubMed  Google Scholar 

  • Koblmüller, S., K. M. Sefc & C. Sturmbauer, 2008b. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615: 5–20.

    Article  Google Scholar 

  • Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov, F. A., 2012. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proceedings of the Royal Society of London B: Biological Sciences 279: 5048–5057.

    Article  Google Scholar 

  • Kornegay, J. R., 1996. Molecular genetics and evolution of stomach and nonstomach lysozymes in the Hoatzin. Journal of Molecular Evolution 42: 676–684.

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa, A., Y. Terai, N. Kobayashi, K. Yoshida, M. Suzuki, A. Nakanishi, Y. Matsuda, M. Watanabe & N. Okada, 2013. Construction of chromosome markers from the Lake Victoria cichlid Paralabidochromis chilotes and their application to comparative mapping. Cytogenetic and Genome Research 142: 112–120.

    Article  PubMed  Google Scholar 

  • Makino, T. & M. Kawata, 2012. Habitat variability correlates with duplicate content of Drosophila genomes. Molecular Biology and Evolution 29: 3169–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariano, D. C., F. L. Pereira, P. Ghosh, D. Barh, H. C. Figueiredo, A. Silva, R. T. Ramos & V. A. Azevedo, 2015. MapRepeat: an approach for effective assembly of repetitive regions in prokaryotic genomes. Bioinformation 11: 276–279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, W. E., H. Tichy & J. Klein, 1998. Phylogeny of African cichlid fishes as revealed by molecular markers. Heredity 80: 702–714.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, New York.

    Book  Google Scholar 

  • Pooart, J., T. Torikata & T. Araki, 2005. Enzymatic properties of rhea lysozyme. Bioscience, Biotechnology, and Biochemistry 69: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Salzburger, W., A. Meyer, S. Baric, E. Verheyen & C. Sturmbauer, 2002. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Systematic Biology 51: 113–135.

    Article  PubMed  Google Scholar 

  • Salzburger, W., T. Mack, E. Verheyen & A. Meyer, 2005. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology 5: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankaran, K. & S. Gurnani, 1972. On the variation in the catalytic activity of lysozyme in fishes. Indian Journal of Biochemistry and Biophysics 9: 162–165.

    CAS  PubMed  Google Scholar 

  • Saurabh, S. & P. K. Sahoo, 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research 39: 223–239.

    Article  CAS  Google Scholar 

  • Stewart, C. B., J. W. Schilling & A. C. Wilson, 1987. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330: 401–404.

    Article  CAS  PubMed  Google Scholar 

  • Sturmbauer, C., W. Salzburger, N. Duftner, R. Schelly & S. Koblmuller, 2010. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Molecular Phylogenetics and Evolution 57: 266–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, K. W., D. M. Irwin & A. C. Wilson, 1991. Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. Journal of Molecular Evolution 33: 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, T. & S. Koblmüller, 2011. The adaptive radiation of cichlid fish in Lake Tanganyika: a morphological perspective. International Journal of Evolutionary Biology 2011: 620754.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi, T. & T. Sota, 2016. A robust phylogeny among major lineages of the East African cichlids. Molecular Phylogenetics and Evolution 100: 234–242.

    Article  PubMed  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taoka, Y., H. Maeda, J. Y. Jo, S. M. Kim, S. I. Park, T. Yoshikawa & T. Sakata, 2006. Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fisheries Science 72: 755–766.

    Article  CAS  Google Scholar 

  • Terai, Y., K. Takahashi, M. Nishida, T. Sato & N. Okada, 2003. Using SINEs to probe ancient explosive speciation: “hidden” radiation of African cichlids? Molecular Biology and Evolution 20: 924–930.

    Article  CAS  PubMed  Google Scholar 

  • Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., L. Geer, C. Chappey, J. A. Kans & S. H. Bryant, 2000. Cn3D: sequence and structure views for Entrez. Trends in Biochemical Sciences 6: 300–302.

    Article  Google Scholar 

  • Weiss, J. D., F. P. Cotterill & U. K. Schliewen, 2015. Lake Tanganyika – A ‘Melting Pot’ of ancient and young cichlid lineages (Teleostei: Cichlidae)? PLoS One 10: e0125043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welker, T. L., C. Lim, M. Yildirim-Aksoy & P. H. Klesius, 2007. Growth, immune function and disease and stress resistance of juvenile Nile tilapia (Oreochromis niloticus) fed graded level of bovine lactoferrin. Aquaculture 262: 156–162.

    Article  CAS  Google Scholar 

  • Yazawa, R., I. Hirono & T. Aoki, 2006. Transgenic zebrafish expressing chicken lysozyme show resistance against bacterial diseases. Transgenic Research 15: 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., 2003. Evolution by gene duplication: an update. Trends in Ecology and Evolution 18: 292–298.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan Grants to Y.T. (Nos. 23570269 and 26440209), an internal SOKENDAI Grant to Y.T., and the Center for the Promotion of Integrated Sciences (CPIS) of SOKENDAI Grant to Y.T. I thank Dr. Tetsumi Takahashi (Graduate School of Science, Kyoto University, Japan; present address: Institute of Natural and Environmental Sciences, University of Hyogo) for identification of Lake Tanganyika cichlids, and Dr. Norihiro Okada (Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology; present address: Foundation of Advancement of International Science, Japan; National Cheng Kung University, Taiwan) for providing laboratory space and experimental equipment.

Author contributions

ST.K.: determination and analysis of lysozyme sequences, manuscript editing. H.T.: manuscript editing. Y.T.: research concept, research planning, all experiments, data analysis, and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohey Terai.

Additional information

Shiho Takahashi-Kariyazono and Yohey Terai have contributed equally to this work.

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research II: Behavior, Ecology and Evolutionary Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi-Kariyazono, S., Tanaka, H. & Terai, Y. Gene duplications and the evolution of c-type lysozyme during adaptive radiation of East African cichlid fish. Hydrobiologia 791, 7–20 (2017). https://doi.org/10.1007/s10750-016-2892-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2892-6

Keywords

Navigation