Advertisement

Hydrobiologia

, Volume 812, Issue 1, pp 131–145 | Cite as

Limited effect of gizzard sand on consumption of the macrophyte Myriophyllum spicatum by the great pond snail Lymnaea stagnalis

  • Elisabeth M. Gross
  • Paola LombardoEmail author
PLANTS IN AQUATIC SYSTEMS

Abstract

The sand stored in the gizzard of some freshwater snails should assist in the mechanical digestion of tough food, yet effects of gizzard sand on consumption of living macrophyte tissue are seldom addressed. We quantified the effects of gizzard sand both on consumption of plant tissue and on snail growth and reproduction with a cross-gradient, 28-day laboratory experiment. We offered apical shoot sections of Myriophyllum spicatum (initial ash content ~ 56%) or soft lettuce (ash content ~ 19%, as control) to Lymnaea stagnalis previously reared on sand or without sand. Gizzard sand had no effect on snail growth but sand-reared snails fed with lettuce initially produced more eggs than their no-sand counterparts. Snails fed M. spicatum exhibited stunted growth and produced only one small egg clutch. Shell height at time of first oviposition of M. spicatum-fed snails was two-thirds of that of lettuce-fed controls. Snails initially appeared to feed on periphyton and older, brownish M. spicatum leaflet tips, but later turned to midstem tissue. Fresh apices were not consumed. Gizzard sand had a limited effect on the ability of L. stagnalis to consume living M. spicatum, with apices likely defended chemically (polyphenols) and midstem tissue defended structurally (high ash content).

Keywords

Submerged macrophytes Freshwater gastropods Herbivory Antiherbivore defenses 

Notes

Acknowledgments

The experiment was carried out during PL’s four-month stay at the University of Konstanz, D, funded by the German Ministry of Foreign Affairs (Auswärtiges Amt) and the German Academic Exchange Service (DAAD) with a special Grant for University of L’Aquila researchers following the earthquake that hit L’Aquila on 6 April 2009. PL also extends her thanks to the Head of the Limnological Institute at the University of Konstanz, Dr. Karl-Otto Rothhaupt, and to the EMG lab staff for their warm hospitality in Konstanz. We are also indebted to Dr. F. Paolo Miccoli (University of L’Aquila) for his help in egg counting. Constructive criticism by the handling Editor, Dr. E.S. Bakker (NIOO-KNAW), by two anonymous reviewers, as well as by Dr. Miccoli and Ms. Marit Mjelde (NIVA) greatly improved the quality of our manuscript.

Supplementary material

10750_2016_2890_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1101 kb)

References

  1. Blindow, I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.CrossRefGoogle Scholar
  2. Blindow, I., A. Hargeby & S. Hilt, 2014. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737: 99–110.CrossRefGoogle Scholar
  3. Boggero, A., T. Bo, S. Zaupa & S. Fenoglio, 2014. Feeding on the roof of the world: the first gut content analysis of very high altitude Plecoptera. Entomologica Fennica 25: 220–224.Google Scholar
  4. Boland, B. B., M. Meerhof, C. Fosalba, N. Mazzeo, M. A. Barnes & R. L. Burks, 2008. Juvenile snails, adult appetites: contrasting resource consumption between two species of applesnails (Pomacea). Journal of Molluscan Studies 74: 47–54.CrossRefGoogle Scholar
  5. Bolser, R. C., M. E. Hay, N. Lindquist, W. Fenical & D. Wilson, 1998. Chemical defenses of freshwater macrophytes against crayfish herbivory. Journal of Chemical Ecology 24: 1639–1658.CrossRefGoogle Scholar
  6. Brönmark, C., 1989. Interactions between epiphytes, macrophytes and freshwater snails: a review. Journal of Molluscan Studies 55: 299–311.CrossRefGoogle Scholar
  7. Budha, P. B., J. Dutta & B. A. Daniel, 2010. Lymnaea stagnalis. The IUCN red list of threatened species 2010: e.T155475A4782225; http://dx.doi.org/10.2305/IUCN.UK.2010-4.RLTS.T155475A4782225.en. Downloaded on 9 October 2015.
  8. Carriker, M. R., 1946. Observations on the functioning of the alimentary system of the snail Lymnaea stagnalis appressa. Biological Bulletin 91: 88–110.CrossRefPubMedGoogle Scholar
  9. Cheruvelil, K. S., P. A. Soranno, J. D. Madsen & M. J. Roberson, 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21: 261–277.CrossRefGoogle Scholar
  10. Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
  11. Colton, H. S., 1908. Some effects of environment on the growth of Lymnaea columella Say. Proceedings of the Academy of Natural Sciences of Philadelphia 60: 410–448.Google Scholar
  12. Cooke, G.D., 2005. Macrophyte biomass control – Phytophagous insects, fish, and other biological controls. Chapter 17. In: Cooke, G. D., E. B. Welch, S. A. Peterson & S. A. Nichols (eds), Restoration and Management of Lakes and Reservoirs, 3rd ed. CRC/Taylor & Francis, Boca Raton, FL: 425–458.Google Scholar
  13. Dalesman, S. & K. Lukowiak, 2011. Interactions between environmental stressors mediated via the same sensory pathway. Communicative & Integrative Biology 4: 717–719.CrossRefGoogle Scholar
  14. Dorenbosch, M. & E. S. Bakker, 2011. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biology 56: 1783–1797.CrossRefGoogle Scholar
  15. Dvořák, J. & E. P. H. Best, 1982. Macroinvertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115–126.CrossRefGoogle Scholar
  16. Elger, A. & N. J. Willby, 2003. Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Functional Ecology 17: 58–65.CrossRefGoogle Scholar
  17. Elger, A. & D. Lemoine, 2005. Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis. Freshwater Biology 50: 86–95.CrossRefGoogle Scholar
  18. Erhard, D. & E. M. Gross, 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany 85: 203–211.CrossRefGoogle Scholar
  19. Fornoff, F. & E. M. Gross, 2014. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 175: 173–185.CrossRefPubMedGoogle Scholar
  20. Glöer, P. & C. Meier-Brook, 2003. Süsswassermollusken. Deutscher Jugendbund für Naturbeobachtung, Hamburg, D.Google Scholar
  21. Grace, J. B. & R. G. Wetzel, 1978. The production biology of Eurasian watermilfoil (Myriophyllum spicatum L.): a review. Journal of Aquatic Plant Management 16: 1–11.Google Scholar
  22. Gross, E. M., 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Verhandlungen der Internationale Vereinigung für Angewandte und Theoretical Limnologie 27: 2116–2119.Google Scholar
  23. Gross, E. M. & R. Kornijów, 2002. Investigation on competitors and predators of herbivorous aquatic Lepidoptera (Acentria ephemerella) on submersed macrophytes in a large prealpine lake. Verhandlungen der Internationalen Vereinigung für Angewandte und Theoretical Limnologie 28: 721–725.Google Scholar
  24. Gross, E. M., H. Meyer & G. Schilling, 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41: 133–138.CrossRefGoogle Scholar
  25. Gross, E. M., C. Feldbaum & C. Choi, 2002. High abundance of herbivorous Lepidoptera larvae (Acentria ephemerella Denis & Schiffermüller) on submerged macrophytes in Lake Constance (Germany). Archiv für Hydrobiologie 155: 1–27.CrossRefGoogle Scholar
  26. Hendricks, R. J. J., 2014. Impact of carbon and nitrogen availability on growth and palatability of the fresh water macrophyte Myriophyllum spicatum. Chapter 5. In: Plants, invertebrate herbivores and nitrogen: ecological impacts of resource availability on trophic interactions. Doctoral Dissertation, Radboud University, Nijmegen, NL: 87–106. ISBN: 978-90-9028037-0. Available at http://repository.ubn.ru.nl/handle/2066/122785 [last accessed: 2 May 2016].
  27. Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, A. Melzer, J. Poltz, S. Sandrock, E.-M. Scharf, S. Schneider & K. van de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes – a guideline and state of the art in Germany. Limnologica 36: 155–171.CrossRefGoogle Scholar
  28. Jones, J. I., J. O. Young, G. M. Haynes, B. Moss, J. W. Eaton & K. J. Hardwick, 1999. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? Oecologia 120: 463–474.CrossRefPubMedGoogle Scholar
  29. Jones, J. I., J. W. Eaton & K. Hardwick, 2000. The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany 67: 191–206.CrossRefGoogle Scholar
  30. Körner, S. & A. Nicklisch, 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871.CrossRefGoogle Scholar
  31. Kuntz, K., P. Heidbüchel & A. Hussner, 2014. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments. Annales de Limnologie – International Journal of Limnology 50: 155–162.CrossRefGoogle Scholar
  32. Le Bagousse-Pinguet, Y., E. M. Gross & D. Straile, 2012. Release from competition and protection determine the outcome of plant interactions along a grazing gradient. Oikos 121: 95–101.CrossRefGoogle Scholar
  33. Latyshev, N. A., A. S. Khardin, S. P. Kasyanov & M. B. Ivanova, 2004. A study on the feeding ecology of chitons using analysis of gut contents and fatty acid markers. Journal of Molluscan Studies 70: 225–230.CrossRefGoogle Scholar
  34. Lemoine, D. G., M.-H. Barrat-Segretain & A. Roy, 2009. Morphological and chemical changes induced by herbivory in three common aquatic macrophytes. International Review of Hydrobiology 94: 282–289.CrossRefGoogle Scholar
  35. Levy, K. J., 1976. A multiple range procedure for independent correlations. Educational and Psychological Measurement 36: 27–31.CrossRefGoogle Scholar
  36. Lombardo, P. & G. D. Cooke, 2002. Consumption and preference of selected food types by two freshwater gastropod species. Archiv für Hydrobiologie 155: 667–685.CrossRefGoogle Scholar
  37. Marko, M. D., E. M. Gross, R. M. Newman & F. K. Gleason, 2008. Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum. Aquatic Botany 88: 57–65.CrossRefGoogle Scholar
  38. Mayer, L. M., P. A. Jumars, G. L. Taghon, S. A. Macko & S. Trumbore, 1993. Low-density particles as potential nitrogenous food for benthos. Journal of Marine Research 51: 373–389.CrossRefGoogle Scholar
  39. McDonald, S. L. C., 1969. The biology of Lymnaea stagnalis (L.) (Gastropoda: Pulmonata). Sterkiana 36: 1–17.Google Scholar
  40. Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.CrossRefGoogle Scholar
  41. Nichols, D., J. Cooke & D. Whiteley, 1971. The Oxford Book of Invertebrates. Oxford University Press, Oxford.Google Scholar
  42. Odum, W. E., 1968. The ecological significance of fine particle selection by the striped mullet Mugil cephalus. Limnology and Oceanography 13: 92–98.CrossRefGoogle Scholar
  43. Ostrofsky, M. L. & E. R. Zettler, 1986. Chemical defences in aquatic plants. Journal of Ecology 74: 279–287.CrossRefGoogle Scholar
  44. Paul, S. R., 1988. Estimation of and testing significance for a common correlation coefficient. Communications in Statistics-Theory and Methods 17: 39–53.CrossRefGoogle Scholar
  45. Pennings, S. C. & V. J. Paul, 1992. Effects of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73: 1606–1619.CrossRefGoogle Scholar
  46. Pieczyńska, E., 2003. Effect of damage by the snail Lymnaea (Lymnaea) stagnalis (L.) on the growth of Elodea canadensis Michx. Aquatic Botany 75: 137–145.CrossRefGoogle Scholar
  47. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  48. Reavell, P. E., 1980. A study of the diets of some British freshwater gastropods. Journal of Conchology 30: 253–271.Google Scholar
  49. Richter, D. & E. M. Gross, 2013. Chara can outcompete Myriophyllum under low phosphorus supply. Aquatic Sciences 75: 457–467.CrossRefGoogle Scholar
  50. Rid, S., 2008. Herbivorie von Lymnaea stagnalis an Wasserpflanzen. Staatsexamensarbeit (report/thesis for final scientific internship as secondary school teacher). University of Konstanz, Konstanz.Google Scholar
  51. Schmölder, U. & W. Becker, 1990. Uptake of mineral particles by Biomphalaria glabrata (Say) (Pulmonata, Mollusca) and its importance for growth rate and egg production. Internationale Revue der gesamten Hydrobiologie 75: 95–101.CrossRefGoogle Scholar
  52. Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.CrossRefGoogle Scholar
  53. Soszka, G. J., 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekologia Polska 23: 393–415.Google Scholar
  54. Storey, R., 1970. The importance of mineral particles in the diet of Lymnaea pereger (Müller). Journal of Conchology 27: 191–195.Google Scholar
  55. Ter Maat, A., C. Zonneveld, J. A. G. M. De Visser, R. F. Jansen, K. Montagne-Wajer & J. M. Koene, 2007. Food intake, growth, and reproduction as affected by day length and food availability in the pond snail Lymnaea stagnalis. American Malacological Bulletin 23: 113–120.CrossRefGoogle Scholar
  56. Thomas, J. D., 2001. Particle selection by snail hosts of human schistosomes in relation to their survival strategies and possible control by ‘environmental antibodies’. Journal of Applied Ecology 38: 736–755.CrossRefGoogle Scholar
  57. Thomas, J. D., D. I. Nwanko & P. R. Sterry, 1985. The feeding strategies of juvenile and adult Biomphalaria glabrata (Say) under simulated natural conditions and their relevance to ecological theory and snail control. Proceedings of the Royal Society of London, series B 266: 177–209.CrossRefGoogle Scholar
  58. von Ende, C., 2001. Repeated-measures analysis: growth and other time-dependent measures. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments, 2nd ed. Oxford University Press, New York: 134–157.Google Scholar
  59. Wong, P. K., Y. Liang, N. Y. Liu & J.-W. Qiu, 2010. Palatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: differential effects of multiple plant traits. Freshwater Biology 55: 2023–2031.CrossRefGoogle Scholar
  60. Yule, C. M., 1996. Trophic relationships and food webs of the benthic invertebrate fauna of two aseasonal tropical streams on Bougainville Island, Papua New Guinea. Journal of Tropical Ecology 12: 517–534.CrossRefGoogle Scholar
  61. XLSTAT, 2015. Built-in user manual for XLSTAT Pro and associated modules. Addinsoft™ XLSTAT, Paris.Google Scholar
  62. Zar, J. H., 2009. Biostatistical Analysis, 5th ed. Pearson/Prentice Hall, Upper Saddle River, NJ.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Limnological InstituteUniversity of KonstanzConstanceGermany
  2. 2.Université de Lorraine, LIEC UMR 7360 CNRS, Rue Général Delestraint, Bâtiment IBISEMetzFrance
  3. 3.“M. Giustini” Ecology Lab, Coppito Science CenterUniversity of L’AquilaL’AquilaItaly
  4. 4.Limno ConsultingRomeItaly

Personalised recommendations