Advertisement

Hydrobiologia

, Volume 784, Issue 1, pp 265–282 | Cite as

Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil

  • Carolline Tressmann CairoEmail author
  • Claudio Clemente Faria Barbosa
  • Evlyn Márcia Leão de Moraes Novo
  • Maria do Carmo Calijuri
Primary Research Paper

Abstract

Estimates of light availability in the water column require accurate quantification at different depths of the diffuse attenuation coefficient (K d). This study examines spatial and seasonal variability of K d derived variables [euphotic zone depth (Z eu), attenuation depth (Z att)], their relationship with optically active constituents (OACs), and their impact on the underwater light field at Ibitinga Reservoir (São Paulo, Brazil). Radiometric data were acquired using profiling spectroradiometers operating from 320 to 950 nm in four campaigns (February–July 2014) concurrently with OAC water samplings. Minimum and maximum values of K dPAR were, respectively, 0.99 and 3.45 m−1 for average ranges of OACs varying from 14.4 to 16.2 mg/l for dissolved total carbon, 11.5–100.5 μg/l for chlorophyll-a, 1.8–14.5 mg/l for total suspended solid, and from 0.73 to 1.71 m−1 for absorption coefficient of colored dissolved organic matter (CDOM) in 440 nm (a CDOM440). CDOM removed blue wavelengths in the first meter of the water column throughout seasons, while green wavelengths were predominant with increasing depth. Furthermore, this study demonstrated that K d variability is mainly influenced by the presence of phytoplankton and CDOM in the reservoir, and reveals that the seasonal variability of K d was much larger than spatial variability.

Keywords

Diffuse attenuation coefficient Tropical reservoir Optically active constituents Underwater light field 

Notes

Acknowledgments

Carolline Tressmann Cairo thanks CNPq for the Master’s Degree Fellowship and INPE Postgraduate Program. The authors thank FAPESP (Project 2008/56252-0) and CAPES Foundation/PROEX for the financial support of data acquisition, coworkers (Renato Ferreira, Lino Sander de Carvalho, Daniel Schaffer, Joaquim Antônio Dionísio Leão, Leandro Coutinho, Conrrado Rudorff, Carlos Araujo) for their support in field campaigns and Dr. Felipe Lobo for his contribution in this paper.

References

  1. APHA, 1985. Standard Methods for the Examination of Water and Wastewater. Byrd Prepress Springfield, Washington, DC.Google Scholar
  2. Babin, M., A. Morel, V. Fournier-Sicre, F. Fell & D. Stramski, 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography 48(2): 843–859.CrossRefGoogle Scholar
  3. Baker, K. S. & R. C. Smith, 1979. Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance. Ocean Optics VI 208: 60–63.CrossRefGoogle Scholar
  4. Barbosa, C. C. F., R. M. P. Ferreira, C. Araujo & E. M. L. M Novo, 2014. Bio-optical characterization of two brazilian hydroelectric reservoirs as support to understand the carbon budget in hydroelectric reservoirs. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, Quebec, Canada: 898-901.Google Scholar
  5. Barbosa, C. C. F., E. M. L. M. Novo, R. M. P. Ferreira, L. A. S. Carvalho, C. T. Cairo, F. Lopes, J. L. Stech & E. Alcantara, 2015. Brazilian inland water bio-optical dataset to support carbon budget studies in reservoirs as well as anthropogenic impacts in Amazon floodplain lakes: preliminary results. ISPRS: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3: 1439–1446.Google Scholar
  6. Bergamino, N., S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier & J. P. Descy, 2010. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment 114(4): 772–780.CrossRefGoogle Scholar
  7. Bricaud, A., A. Morel, M. Babin, K. Allali & H. Claustre, 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. Journal of Geophysical Research 103(C13): 31033–31044.CrossRefGoogle Scholar
  8. Calijuri, M. C., 1999. The phytoplankton community in a tropical reservoir (Barra Bonita, SP). Free-docency Thesis, School of Engineering at São Carlos, University of São Paulo, São Carlos.Google Scholar
  9. Calijuri, M. C., A. C. A. Dos Santos & S. Jati, 2002. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, S.P., Brazil). Journal of Plankton Research 34(7): 617–634.CrossRefGoogle Scholar
  10. CBH-TJ-Tietê-Jacaré Hydrographic Basin Committee, 2013. Situation Report of Water Resources 2013 – Base Year 2012. UGRHI 13: Tietê-Jacaré Hydrographic Basin, Araraquara [available on internet at http://www.sigrh.sp.gov.br/public/uploads/documents/7476/relatorio-de-situacao-2013-cbh-tj.pdf].
  11. Cooke, G. D., E. B. Welch, S. A. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs, 3rd ed. CRC Press, New York.Google Scholar
  12. Costa, M. P. F., E. M. L. M. Novo & K. H. Telmer, 2013. Spatial and temporal variability of light attenuation in Lange Rivers of the Amazon. Hydrobiologia 702: 171–190.CrossRefGoogle Scholar
  13. D’Sa, E. J. & R. L. Miller, 2003. Bio-optical properties in waters influenced by the Mississippi River during low flow conditions. Remote Sensing of Environment 84: 538–549.CrossRefGoogle Scholar
  14. Dandonneau, Y. & L. Lemasson, 1987. Water-column chlorophyll in an oligotrophic environment: correction for the sampling depths and variations of the vertical structure of density, and observation of a growth period. Journal of Plankton Research 9(1): 215–234.CrossRefGoogle Scholar
  15. Deblois, C. P., A. Marchand & P. Juneau, 2013. Comparison of photoacclimation in twelve freshwater photoautotrophs (Chlorophyte, Bacillaryophyte, Cryptophyte and Cyabophyte) isolated from a natural community. PLoS One 8(3): e57139.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferreira, R. M. P., 2014. Optical and dissolved organic carbon characterization in Três Marias/MG reservoir. MSc Thesis (MSc in Remote Sensing), Brazilian Institute for Space Research, São José dos Campos.Google Scholar
  17. Filoso, S., L. A. Martinelli, M. R. Williams, L. B. Lara, A. Krusche, M. V. Ballester & P. B. de Camargo, 2003. Land use and nitrogen export in the Piracicaba River Basin, Southeast Brazil. Biogeochemistry 65(3): 275–294.CrossRefGoogle Scholar
  18. Gallegos, C. L., P. J. Werdell & C. R. McClain, 2011. Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research 11: 1–19.Google Scholar
  19. Gege, P., 2012. Analytic model of the direct and diffuse components of downwelling spectra irradiance in water. Applied Optics 51(9): 1407–1419.CrossRefPubMedGoogle Scholar
  20. Gordon, H. R. & A. Y. Morel, 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. Springer, New York.CrossRefGoogle Scholar
  21. Guimarães, C., P. R. Leopoldo, J. A. Cruz & S. C. Fontana, 1998. Aspectos limnológicos do reservatório de Ibitinga – SP. Revista Barsileira de Recursos Hídricos 3(1): 89–103.CrossRefGoogle Scholar
  22. IPT-Institute for Technological Research, 1981. Geomorphological map of São Paulo State. Monografias (5) [available on internet at http://confins.revues.org/docannexe/image/6168/img-15.jpg].
  23. Jordan, T. E., D. L. Correll & D. E. Weller, 1997. Relating nutrient discharges from watersheds to land use and streamflow variability. Water Resources Research 33(11): 2579–2590.CrossRefGoogle Scholar
  24. Kauer, T., H. Arst & L. Tuvikene, 2010. Underwater light field and spectral distribution of attenuation depth in inland and coastal waters. Oceanologia 52(2): 155–170.CrossRefGoogle Scholar
  25. Kirk, J. T. O., 1976. Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal southeastern Australian waters. Australian Journal of Marine and Freshwater Research 27(1): 61–71.CrossRefGoogle Scholar
  26. Kirk, J. T. O., 2011. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed. Cambridge University Press, New York.Google Scholar
  27. Kloiber, S. M., P. L. Brezonik, L. G. Olmanson & M. E. Bauer, 2002. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment 82(1): 38–47.CrossRefGoogle Scholar
  28. Kutser, T., D. Pierson, L. Tranvik, A. Reinart, S. Sobek & K. Kallio, 2005. Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes using satellite remote sensing. Ecosystems 8: 709–720.CrossRefGoogle Scholar
  29. Le, C., C. Hu, D. English, J. Cannizzaro, Z. Chen, C. Kovach, C. J. Anastasiou, J. Zhao & K. Carder, 2013. Inherent and apparent optical properties of the complex estuarine waters of Tampa Bay: What controls light? Estuarine, Coastal and Shelf Science 117: 54–69.CrossRefGoogle Scholar
  30. Lewis, M. R., M. Carr, G. Feldman, W. Esaias & C. McMclain, 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347: 543–545.CrossRefGoogle Scholar
  31. Lima, I. B. T., 2005. Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere 59(11): 1697–1702.CrossRefPubMedGoogle Scholar
  32. Londe, L. R., 2008. Phytoplankton spectral behaviour in a Brazilian eutrophic reservoir – Ibitinga (SP). PhD Thesis (PhD in Remote Sensing), Brazilian Institute for Space Research, São José dos Campos.Google Scholar
  33. Lund-Hansen, L. C., 2004. Diffuse attenuation coefficients Kd(PAR) at the estuarine North Sea–Baltic Sea transition: time-series, partitioning, absorption, and scattering. Estuarine, Coastal and Shelf Science 61: 251–259.CrossRefGoogle Scholar
  34. Luzia, A. P., 2009. Organizational structure of phytoplankton in lotic and lentic systems of the Tietê/Jacaré basin (UGRHI-Tietê-Jacare) in relation to water quality and trophic state. PhD Thesis (PhD in Biological Sciences), Postgraduate Program in Ecology and Natural Resources, University of São Paulo, São Carlos.Google Scholar
  35. MacIntyre, H. L., T. M. Kana, T. Anning & R. J. Geider, 2002. Review: photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology 38: 17–38.CrossRefGoogle Scholar
  36. Maiolini, B., L. Silveri & V. Lencioni, 2007. Hydroelectric power generation and disruption of the natural stream flow: effects on the zoobenthic community. Studi Trentini di Scienze Naturali, Acta Biologia 83: 21–26.Google Scholar
  37. Margalef, R., 1975. Typology of reservoirs. Verhandlungen Internationale Vereinigung Limnologie 19: 1841–1848.Google Scholar
  38. Martinelli, L. A. & S. Filoso, 2008. Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecological Applications 18(4): 885–898.CrossRefPubMedGoogle Scholar
  39. Miranda, M. J., H. S. Pinto, J. Z. Júnior, R. M. Fagundes, D. B. Fonsechi, L. Calve & G. Q. Pellegrino, 2014. Climate of the Municipalities of São Paulo State – The Köppen Climate Classification for the São Paulo State. Centre of Meteorological and Climate Research Applied to Agriculture (CEPAGRI). UNICAMP Meteorology [available on internet at http://www.cpa.unicamp.br/outras-informacoes/clima-dos-municipios-paulistas.html].
  40. Mishra, D. R., S. Narumalani, D. Rundquist & M. Lawson, 2005. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: implications for water penetration by high resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing 60: 48–64.CrossRefGoogle Scholar
  41. Mobley, C. D., 1994. Light and Water: Radiative Transfer in Natural Waters. Academic, San Diego.Google Scholar
  42. Mobley, C. D., 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics 38(36): 7442–7455.CrossRefPubMedGoogle Scholar
  43. Mueller, J. L., 2000. In-water radiometric profile measurements and data analysis protocols. In Fargion, G. S. & J. L. Mueller (eds), Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, NASA/TM-2000-209966. Goddard Space Flight Center, Greenbelt: 87–97.Google Scholar
  44. Novelli, A. S., 1996. Diagnosis of surface water resources of the hydrographic basin of Jacaré-Guaçu River. MSc Thesis (MSc in Environmental Engineering Science), School of Engineering at São Carlos, University of São Paulo, São Carlos.Google Scholar
  45. Novo, E. M. L. M., L. R. Londe, C. Barbosa, C. A. S. Araujo & C. D. Rennó, 2013. Proposal for a remote sensing trophic state index based upon Thematic Mapper/Landsat images. Revista Ambiente and Água 8(3): 65–82.Google Scholar
  46. Nush, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie 14: 14–39.Google Scholar
  47. Ohlmann, J. C., D. Siegel & C. Gautier, 1996. Ocean mixed layer radiant heating and solar penetration: a global analysis. Journal of Climate 9: 2265–2280.CrossRefGoogle Scholar
  48. Peixoto, C. A. B., 2010. Geodiversity of São Paulo State. Geology Program of Brazil, Levantamento Survey of Geodiversity. Ministry of Mines and Energy of Brazil Department of Geology, Mining and Mineral Processing, CPRM, São Paulo [available on internet at <http://www.cprm.gov.br/publique/media/Geodiversidade_SP.pdf].
  49. Pereira, P. S., B. V. Veiga & M. Dziedzic, 2010. Evaluation of phosphorus and nitrogen influence on eutrophication process of large reservoirs. Case study: Foz do Areia Hydroelectric Power Station. MSc Thesis, Positivo University, Curitiba.Google Scholar
  50. Reynolds, C. S., 2006. Ecology of phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  51. Richardson, K., J. Beardall & J. A. Raven, 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytologist 93: 157–191.CrossRefGoogle Scholar
  52. Ross, J. L. S. & I. C. Moroz, 1996. Mapa geomorfológico do estado de São Paulo. Revista do Departamento de Geografia da FFLCH/USP 10: 41–59.Google Scholar
  53. Ruban, V. & D. Demare, 1998. Sediment phosphorus and internal phosphate flux in the hydroelectric reservoir of Bort-les-Orgues, France. In Amiard, J.C., B. Le Rouzic, B. Berthet & G. Bertru (eds), Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces. Kluwer Academic Publishers, Netherlands: 349–359.CrossRefGoogle Scholar
  54. Rudorff, B. F. T., D. A. Aguiar, W. F. Silva, L. M. Sugawara, M. Adami & M. A. Moreira, 2010. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sensing 2(4): 1057–1076.CrossRefGoogle Scholar
  55. Sarangi, R. K., P. Chauhan & S. R. Nayak, 2002. Vertical diffuse attenuation coefficient (Kd) based optical classification of IRS-P3 MOS-B satellite ocean colour data. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 111(3): 237–245.Google Scholar
  56. Sathyendranath, S., T. Platt, C. M. Caverhill, R. Warnock & M. Lewis, 1989. Remote sensing of oceanic primary production: computations using a spectral model. Deep-Sea Research 36(3): 431–453.CrossRefGoogle Scholar
  57. SIGRH-Integrated System of Water Resources Management of São Paulo State, 2014. Committee of Jacaré-Pepira Hydrographic Basin – Presentation [available on internet at [http://www.sigrh.sp.gov.br/cbhtj/apresentacao].
  58. Smith, R. C. & K. S. Baker, 1978. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography 23(2): 247–259.CrossRefGoogle Scholar
  59. Son, S. & M. Wang, 2015. Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters. Remote Sensing of Environment 159: 250–258.CrossRefGoogle Scholar
  60. Song, K. S., D. W. Liu, L. Li, Z. M. Wang, Y. D. Wang & G. J. Jiang, 2010. Spectral absorption properties of colored dissolved organic matter (CDOM) and total suspended matter (TSM) of inland waters. Proceedings of the International Society for Optical Engineering 7811: 78110B.Google Scholar
  61. Stech, J. L., I. B. T. Lima, E. M. L. M. Novo, A. T. Assireu, J. A. Lorenzzetti, J. C. Carvalho & R. R. Rosa, 2006. Telemetric monitoring system for meteorological and limnological data acquisition. Verhandlungen International en Verein Limnologie 29: 747–1750.Google Scholar
  62. Streher, A. S., 2013. Occurrence and removal of sunglint effects in hyperspectral and high spatial resolution images from the SpecTIR sensor. MSc Thesis (MSc in Remote Sensing), Brazilian Institute for Space Research, São José dos Campos.Google Scholar
  63. Tilstone, G. H., G. F. Moore, K. Sorensen, R. Doerffer, R. Rottgers, K. Ruddick, R. Pasterkamp & P. V. Jorgensen, 2002. REVAMP Protocols. European Space Agency [available on internet at http://www.brockmann-consult.de/revamp/pdfs/REVAMP_Protocols.pdf].
  64. Tundisi, J. G. & T. Matsumura-Tundisi, 2003. Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia 500: 231–242.CrossRefGoogle Scholar
  65. Tundisi, J. G., T. Matsumura-Tundisi & M. C. Calijuri, 1993. Limnology and management of reservoirs in Brazil. In Straskraba, M., J. G. Tundisi & A. Duncan (eds), Comparative Reservoir Limnology and Water Quality Management. Kluwer Academic Publishers, Netherlands: 25–55.CrossRefGoogle Scholar
  66. Tundisi, J. G., T. Matsumura-Tundisi, D. C. Pareschi, A. P. Luzia, P. H. Von Haeling & E. H. Frollini, 2008. A bacia hidrográfica do Tietê/Jacaré: estudo de caso em pesquisa e gerenciamento. Estudos Avançados 22(63): 159–172.CrossRefGoogle Scholar
  67. Wang, M., S. Son & L. W. Harding Jr., 2009. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. Journal of Geophysical Research 114: 1–15.Google Scholar
  68. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic, San Diego.Google Scholar
  69. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer, New York.CrossRefGoogle Scholar
  70. Zhang, Y. L., B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo & W. M. Chen, 2006. Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: a case study in Longgan Lake and Taihu Lake. Science in China: Series D Earth Sciences 49: 114–125.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carolline Tressmann Cairo
    • 1
    Email author
  • Claudio Clemente Faria Barbosa
    • 2
  • Evlyn Márcia Leão de Moraes Novo
    • 1
  • Maria do Carmo Calijuri
    • 3
  1. 1.Remote Sensing DivisionNacional Institute for Space Research-INPESão José dos CamposBrazil
  2. 2.Image Processing DivisionNacional Institute for Space Research-INPESão José dos CamposBrazil
  3. 3.Department of Hydraulic and Sanitation, School of Engineering at São CarlosUniversity of São PauloSão CarlosBrazil

Personalised recommendations