, Volume 784, Issue 1, pp 171–185 | Cite as

The response of Cladocerans to recent environmental forcing in an Alpine Lake on the SE Tibetan Plateau

  • Lingyang Kong
  • Xiangdong YangEmail author
  • Giri Kattel
  • N. J. Anderson
  • Zhujun Hu
Primary Research Paper


Global environmental change has affected aquatic ecosystems of the southeast Tibetan Plateau during the past 200 years, altering the composition and biomass of primary producers (e.g. algae). However, the response of primary consumers (e.g. cladocerans) to this recent environmental forcing is not well documented. Samples of cladoceran remains from sediment traps (1-year deployment), surface sediments covering a range of water depths and a short 22.5-cm sediment core were analysed in a small, remote alpine lake (Moon Lake) in Sichuan Province (SW China). Littoral forms, notably Chydorus sphaericus and Acroperus harpae, together with Daphnia pulex dominated the cladoceran community. Remains of these cladocerans were well represented in the sediment core assemblages as indicated by their relative abundance in the surface sample. There was a marked increase in the abundance of D. pulex and total cladoceran fluxes in the sediment core from ca. 1880 AD, coinciding with the changes in diatom assemblages and pigments. Analysis of the multi-proxy data (cladocerans, diatom, pigment, total organic carbon, C/N ratio, air temperature and atmospheric NO3 records) suggests that both direct and indirect climatic forcing, coupled with enhanced nutrient supply (e.g. NO3 deposition) effects on primary producers have changed cladoceran community dynamics in Moon Lake over the last ~200 years.


Cladoceran zooplankton Nutrient loading Climatic forcing Alpine lake Trophic dynamics Southwest China 



We are grateful to Yuxin Zhu, Weilan Xia, Shen Min, Dr. Suzanne McGowan and Dr. Qian Wang for providing the chemical, chronological, reconstructed temperature, and pigment data as well as field assistance. GK acknowledges the assistance of the Chinese Academy of Sciences for the CAS-PIFI Visiting Fellowship programme at NIGLAS; NJA acknowledges the support of the Chinese Academy of Sciences (Senior Visiting Professorship) and the Royal Society. This study was supported by the National Science Foundation of China (Grant No. 41272379, 41502170), the National Basic Research Program of China (Grant No. 2012CB956100), Nanjing Institute of Geography & Limnology, CAS (Grant No. NIGLAS2012135004) and the Jiangsu Collaborative Innovation Center for Climate Change. Finally, we would like to thank editors of Hydrobiologia, two anonymous reviewers, and B Alrcic (France), for their constructive reviews.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Research involved in animal and human participant

This research does not involve human participants and/or animals. All the co-authors agree with the submission of this paper to Hydrobiologia.

Supplementary material

10750_2016_2868_MOESM1_ESM.docx (260 kb)
Supplementary material 1 (DOCX 259 kb)


  1. Alric, B. & M. E. Perga, 2011. Effects of production, sedimentation and taphonomic processes on the composition and size structure of sedimenting cladoceran remains in a deep subalpine lake: paleo-ecological implications. Hydrobiologia 676: 101–116.CrossRefGoogle Scholar
  2. Alric, B., J. P. Jenny, V. Berthon, F. Arnaud, C. Pignol, J. L. Reyss, P. Sabatier & M. E. Perga, 2013. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94: 2767–2780.CrossRefPubMedGoogle Scholar
  3. Amsinck, S. L., E. Jeppesen & D. Ryves, 2003. Cladoceran stratigraphy in two shallow brackish lakes with special reference to changes in salinity, macrophyte abundance and fish predation. Journal of Paleolimnology 29: 495–507.CrossRefGoogle Scholar
  4. Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring and Chronological Techniques. Kluwer, Dordrecht: 171–203.Google Scholar
  5. Anderson, N. J., 1990. Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnology and Oceanography 35: 497–508.CrossRefGoogle Scholar
  6. Battarbee, R. W., J. A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28: 161–179.CrossRefGoogle Scholar
  7. Battarbee, R. W., M. Kernan & N. Rose, 2009. Threatened and stressed mountain lakes of Europe: assessment and progress. Aquatic Ecosystem Health & Management 12: 118–128.CrossRefGoogle Scholar
  8. Bergström, A. K. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635–643.CrossRefGoogle Scholar
  9. Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40: 582–588.CrossRefGoogle Scholar
  10. Catalan, J., M. Ventura, A. Brancelj, I. Granados, H. Thies & U. Nickus, 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28: 25–46.CrossRefGoogle Scholar
  11. Catalan, J., M. G. Barbieri, F. Bartumeus, P. Bitušík, I. Botev, A. Brancelj, D. Cogălniceanu, M. Manca, A. Marchetto, N. Ognjanova-Rumenova, S. Pla, M. Rieradevall, S. Sorvari, E. Štefkova, E. Stuchli & M. Ventura, 2009. Ecological thresholds in European alpine lakes. Freshwater Biology 54: 2494–2517.CrossRefGoogle Scholar
  12. Catalan, J., S. Pla-Rabés, A. P. Wolfe, J. P. Smol, K. M. Rühland, N. J. Anderson, J. Kopáček, E. Stuchlík, R. Schmidt, K. A. Koinig, L. Camarero, R. J. Flower, O. Heiri, C. Kamenik, A. Korhola, P. R. Leavitt, R. Psenner & I. Renberg, 2013. Global change revealed by palaeolimnological records from remote lakes: a review. Journal of Paleolimnology 49: 513–535.CrossRefGoogle Scholar
  13. Chen, G., C. Dalton & D. Taylor, 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology 44: 465–481.CrossRefGoogle Scholar
  14. Chiang, S. C. & N. S. Du, 1979. Fauna Sinica, Crustacean: Freshwater Cladocera. Science Press, Academia Sinica, Beijing. (in Chinese).Google Scholar
  15. Demott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Ecology 63: 1949–1966.CrossRefGoogle Scholar
  16. Demott, W. R. & W. C. Kerfoot, 1982. Competition among cladocerans nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.CrossRefGoogle Scholar
  17. Dodson, S. I. & D. G. Frey, 2001. Cladocera and other branchiopoda. In Thorp, H. J. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, London: 723–786.Google Scholar
  18. Eggermont, H. & K. Martens, 2011. Preface: cladoceran crustaceans: sentinels of environmental change. Hydrobiologia 676: 1–7.CrossRefGoogle Scholar
  19. Elser, J. J., T. Andersen, J. S. Baron, A. K. Bergström, M. Jansson, M. Kyle, K. R. Nydick, L. Steger & D. O. Hessen, 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835–837.CrossRefPubMedGoogle Scholar
  20. Frey, D. G., 1986. Cladocera analysis. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 667–692.Google Scholar
  21. Frey, D. G., 1988. Littoral and offshore communities of diatoms, Cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.Google Scholar
  22. Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (northern Poland). Hydrobiologia 526: 137–144.CrossRefGoogle Scholar
  23. George, D. G. & D. P. Hewitt, 2006. The impact of year-to-year changes in the weather on the dynamics of Daphnia in a thermally stratified lake. Aquatic Ecology 40: 33–47.CrossRefGoogle Scholar
  24. Grimm, E. C., 2011. TILIA software version 1.7.16. Illinois State Museum, Research and Collection Center. Springfield USA. Available:
  25. Hofmann, W., 1987. Cladoceran in space and time: analysis of lake sediments. Hydrobiologia 145: 315–321.CrossRefGoogle Scholar
  26. Holtgrieve, G. W., D. E. Schindler, W. O. Hobbs, P. R. Leavitt, E. J. Ward, L. Bunting, G. Chen, B. P. Finney, I. Gregory-Eaves, S. Holmgren, M. J. Lisac, P. J. Lisi, K. Nydick, L. A. Rogers, J. E. Saros, D. T. Selbie, M. D. Shapley, P. B. Walsh & A. P. Wolfe, 2011. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334: 1545–1548.CrossRefPubMedGoogle Scholar
  27. Hu, Z., N. J. Anderson, X. Yang & S. McGowan, 2014. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology 20: 1614–1628.CrossRefPubMedGoogle Scholar
  28. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes the role of nutrient state, submerged macrophytes and water depth. Hydrobiology 119: 151–164.CrossRefGoogle Scholar
  29. Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S. L. Amsinck, F. Riget & M. Søndergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.CrossRefGoogle Scholar
  30. Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321–330.CrossRefGoogle Scholar
  31. Kamenik, C., K. Szeroczyńska & R. Schmidt, 2007. Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594: 33–46.CrossRefGoogle Scholar
  32. Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina Cladocera in a polyhumic lake. Freshwater Biology 19: 285–296.CrossRefGoogle Scholar
  33. Kattel, G. R., R. W. Battarbee, A. Mackay & H. J. B. Birks, 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38: 157–181.CrossRefGoogle Scholar
  34. Kattel, G. R., R. W. Battarbee, A. W. Mackay & H. J. B. Birks, 2008. Recent ecological change in a remote Scottish mountain loch: an evaluation of a Cladocera-based temperature transfer-function. Palaeogeography Palaeoclimatology Palaeoecology 259: 51–76.CrossRefGoogle Scholar
  35. Koinig, K. A., C. Kamenik, R. Schmidt, A. Agustí-Panareda, P. Appleby, A. Lami, M. Prazakova, N. Rose, Ø. A. Schnell, R. Tessadri, R. Thompson & R. Psenner, 2002. Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries–the influence of air temperature on biological parameters. Journal of Paleolimnology 28: 147–160.CrossRefGoogle Scholar
  36. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.CrossRefGoogle Scholar
  37. Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking environmental change using lake sediments. Kluwer, Dordrecht: 5–41.CrossRefGoogle Scholar
  38. Kuang, X. Y., J. Liu, H. L. Wang & S. M. Wang, 2008. Inter-hemispheric comparison of climate change in the last millennium based on the ECHO-G simulation. Chinese Science Bulletin 53: 2692–2700.Google Scholar
  39. Larsen, C. P. S. & G. M. MacDonald, 1993. Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quaternary Science Reviews 12: 781–792.CrossRefGoogle Scholar
  40. Liang, E. Y., X. M. Shao & Y. Xu, 2009. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theoretical and Applied Climatology 98: 9–18.CrossRefGoogle Scholar
  41. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps I. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  42. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps II. Nutrients. Journal of Paleolimnology 19: 443–463.CrossRefGoogle Scholar
  43. Manca, M. & P. Comoli, 1995. Temporal variations of fossil Cladocera in the sediments of Lake Orta (N. Italy) over the last 400 years. Journal of Paleolimnology 14: 113–122.CrossRefGoogle Scholar
  44. Manca, M. & P. Comoli, 2004. Reconstructing long-term changes in Daphnia’s body size from subfossil remains in sediments of a small lake in the Himalayas. Journal of Paleolimnology 32: 95–107.CrossRefGoogle Scholar
  45. Neff, J. C., A. P. Ballantyne, G. L. Farmer, N. M. Mahowald, J. L. Conroy, C. C. Landry, J. T. Overpeck, T. H. Painetr, C. R. Lawrence & R. L. Reynolds, 2008. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geoscience 1: 189–195.CrossRefGoogle Scholar
  46. Nevalainen, L., T. P. Luoto, S. Kultti & K. Sarmaja-Korjonen, 2013. Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. Journal of Biogeography 40: 1548–1559.CrossRefGoogle Scholar
  47. Persson, J., M. T. Brett, T. Vrede & J. L. Ravet, 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116: 1152–1163.CrossRefGoogle Scholar
  48. Rühland, K., N. Phadtare, R. Pant, S. Sangode & J. Smol, 2006. Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophysical Research Letters 33: L15709.CrossRefGoogle Scholar
  49. Saros, J. E., K. C. Rose, D. W. Clow, V. C. Stephens, A. B. Nurse, H. A. Arnett, J. Stone, C. E. Williamson & A. P. Wolfe, 2010. Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environmental Science & Technology 44: 4891–4896.CrossRefGoogle Scholar
  50. Scholten, M. C. T., E. M. Foekema, H. P. Dokkum, N. H. B. M. Kaag & R. G. Jak, 2005. Daphnid grazing ecology. In Scholten, M. C., E. M. Foekema., H. P. V. Dokkum., N. H. B. M. Kaag & R. G. Jak (eds), Eutrophication Management and Ecotoxicology. Environmental Science. Springer, Berlin: 21–56.CrossRefGoogle Scholar
  51. Shao, X. & J. Fan, 1999. Past climate on west Sichuan Plateau as reconstructed from ring-widths of dragon spruce. Quaternary Sciences 1: 81–89. (in Chinese).Google Scholar
  52. Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. Douglas, V. J. Jones, A. Korhola, R. Pienitzj, K. Rühlanda, S. Sorvarii, D. Antoniadesh, S. J. Brooksk, M. A. Falluj, M. Hughesg, B. E. Keatleya, T. E. Laingj, N. Micheluttia, L. Nazaroval, M. Nymani, A. M. Patersona, B. Perrenh, R. Quinlanh, M. Rautioi, E. Saulnier-Talbot, S. Siitoneni, N. Solovievag & J. Weckströmi, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102: 4397–4402.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladoceran from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.Google Scholar
  54. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination. Version 4.5. Microcomputer Power, Ithaca, NY.Google Scholar
  55. Thienpont, J. R., J. B. Korosi, E. S. Cheng, K. Deasley, M. F. J. Pisaric & J. P. Smol, 2015. Recent climate warming favours more specialized cladoceran taxa in western Canadian Arctic lakes. Journal of Biogeography 42: 1553–1565.CrossRefGoogle Scholar
  56. Thompson, L. G., T. Yao, E. Mosley-Thompson, M. E. Davis, K. A. Henderson & P. N. Lin, 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289: 1916–1919.CrossRefPubMedGoogle Scholar
  57. Wang, R., X. Yang, P. Langdon & E. Zhang, 2011. Limnological responses to warming on the Xizang Plateau, Tibet, over the past 200 years. Journal of Paleolimnology 45: 257–271.CrossRefGoogle Scholar
  58. Weider, L. J., 1987. Life history variation among low-arctic clones of obligately parthenogenetic Daphnia pulex: a diploid-polyploid complex. Oecologia 73: 251–256.CrossRefGoogle Scholar
  59. Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of chydorid, Caldocera in mud and vegetative habitats. Ecology 59: 1177–1188.CrossRefGoogle Scholar
  60. Wischnewski, J., A. Kramer, Z. Kong, A. Mackay, G. Simpson, S. Mischke & U. Herzschuh, 2011. Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries. Global Change Biology 17: 3376–3391.CrossRefGoogle Scholar
  61. Wolfe, A. P., J. S. Baron & R. J. Cornett, 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology 25: 1–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lingyang Kong
    • 1
    • 2
  • Xiangdong Yang
    • 1
    Email author
  • Giri Kattel
    • 1
    • 3
    • 4
  • N. J. Anderson
    • 5
  • Zhujun Hu
    • 6
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Water Research NetworkFederation University of AustraliaBallaratAustralia
  4. 4.Hydrology and Water Resources Unit, School of Infrastructure EngineeringUniversity of MelbourneMelbourneAustralia
  5. 5.Department of GeographyLoughborough UniversityLoughboroughUK
  6. 6.School of Geography ScienceNanjing Normal UniversityNanjingChina

Personalised recommendations