Advertisement

Hydrobiologia

, Volume 784, Issue 1, pp 125–141 | Cite as

Recruitment pattern of benthic fauna on artificial substrates in brackish low-diversity system (the Baltic Sea)

  • Adam SokołowskiEmail author
  • Marcelina Ziółkowska
  • Piotr Balazy
  • Irmina Plichta
  • Piotr Kukliński
  • Stella Mudrak-Cegiołka
Primary Research Paper

Abstract

Recruitment pattern of benthic fauna in temperate marine ecosystems is still not well recognized, particularly in inland coastal seas with distinct environmental and ecological conditions. This study investigates the effect of natural surrounding community structure, environmental variables and substrate orientation on short-term recruitment of motile and sessile epibenthos in the southern Baltic Sea. Recruitment on topsurface and undersurface of Perspex panels deployed on the seafloor in a horizontal position was monitored monthly from March 2008 to March 2010 in two coastal habitats (sandy and gravelly) in the Gulf of Gdańsk. Recruitment of epibenthic invertebrates took place primarily over a growing season (March–October) indicating that reproduction and settlement are driven by water temperature and gross primary production. Communities of recruits showed relatively homogenous spatial taxonomic composition but total epifaunal abundance varied between bottom types. Planktonic larvae supply and species-specific recruitment behaviour account primarily for settlement success, particularly on panel topsurface which hosted more diverse and more abundant recruits than panel undersurface. Relative to vertical substrates, horizontal panels had less numerous barnacle recruits probably due to inhibitory effect of sediment deposition and organic biofilm.

Keywords

Recruitment Benthic fauna Artificial hard substrate Baltic Sea SCUBA 

Notes

Acknowledgements

This study was supported by an internal research grant (to A.S.) from the University of Gdańsk, Poland (BW/G245-5-0239-9).

References

  1. Andersson, M. H., M. Berggren, D. Wilhelmsson & M. C. Ohman, 2009. Epibenthic colonization of concrete and steel pilings in a cold-temperate embayment: a field experiment. Helgoland Marine Research 63: 249–260.CrossRefGoogle Scholar
  2. Atilla, N., M. A. Wetzel & J. W. Fleeger, 2003. Abundance and colonization potential of artificial hard substrate-associated meiofauna. Journal of Experimental Marine Biology and Ecology 287: 273–287.CrossRefGoogle Scholar
  3. Berntsson, K. M., P. R. Jonsson, A. I. Larsson & S. Holdt, 2004. Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Marine Ecology Progress Series 275: 199–210.CrossRefGoogle Scholar
  4. Boaventura, D., A. Moura, F. Leitão, S. Carvalho, J. Cúrdia, P. Pereira, L. da Fonseca, M. N. dos Santos & C. C. Monteiro, 2006. Macrobenthic colonisation of artificial reefs on the southern coast of Portugal (Ancão, Algarve). Hydrobiologia 555: 335–343.CrossRefGoogle Scholar
  5. Bolałek, J., K. Smolarz, A. Zgrundo, J. Miąc, S. Mudrak, P. Owsianny, D. Burska, D. Pryputniewicz & M. Kowalewski, 2008. Wykonanie analiz hydrologicznych, hydrochemicznych, biologicznych i hydrofizycznych z rejonu planowanej inwestycji wypuszczenia kolektora ścieków w Dębogórzu. University of Gdańsk, Gdynia (in Polish): 33 pp.Google Scholar
  6. Bonsdorff, E., 2006. Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. Journal of Experimental Marine Biology and Ecology 330: 383–391.CrossRefGoogle Scholar
  7. Bowden, D. A., A. Clarke, L. S. Peck & D. K. A. Barnes, 2006. Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years. Marine Ecology Progress Series 316: 1–16.CrossRefGoogle Scholar
  8. Centurión, R. & L. J. Gappa, 2011. Bryozoan assemblages on hard substrata: species abundance distribution and competition for space. Hydrobiologia 658: 329–341.CrossRefGoogle Scholar
  9. Chojnacki, C. J. & J. E. Ceronik, 1996. Artificial reefs in the Pomeranian Bay (Southern Baltic) as biofiltration sites. In: Proceedings of the 13th Symposium of the Baltic Marine Biologists: 162–172.Google Scholar
  10. Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth. 25 pp.Google Scholar
  11. Dürr, S. & M. Wahl, 2004. Isolated and combined impacts of blue mussels (Mytilus edulis) and barnacles (Balanus improvisus) on structure and diversity of a fouling community. Journal of Experimental Marine Biology and Ecology 306: 181–195.CrossRefGoogle Scholar
  12. Dziubińska, A., 2011. Rate and direction of benthic communities succession in the Gulf of Gdańsk coastal zone. PhD dissertation, University of Gdańsk, Gdynia (in Polish): 171 pp.Google Scholar
  13. Dziubińska, A. & U. Janas, 2007. Submerged objects – a nice place to live and develop. Succession of fouling communities in the Gulf of Gdańsk. Southern Baltic. Oceanological and Hydrobiological Studies 36: 65–78.Google Scholar
  14. Dziubińska, A. & A. Szaniawska, 2010. Short-term study on early succession stages of fouling communities in the coastal zone of the Puck Bay (southern Baltic Sea). Oceanological and Hydrobiological Studies 39: 3–16.Google Scholar
  15. Ferreira, S. M., M. A. Pardal, A. I. Lillebø, P. G. Cardoso & J. C. Marques, 2004. Population dynamics of Cyathura carinata (Isopoda) in an eutrophic temperate estuary. Estuarine, Coastal and Shelf Science 61: 669–677.CrossRefGoogle Scholar
  16. Gröndahl, F., 1989. Evidence of gregarious settlement of planula larvae of the scyphozoan Aurelia aurita: an experimental study. Marine Ecology Progress Series 56: 119–125.CrossRefGoogle Scholar
  17. HELCOM, 2009. Biodiversity in the Baltic Sea – an integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea: executive summary. Baltic Sea Environmental Proceedings No. 116A.Google Scholar
  18. Hunt, H. L. & R. E. Scheibling, 1996. Physical and biological factors influencing mussel (Mytilus trossulus, M. edulis) settlement on a wave-exposed rocky shore. Marine Ecology Progress Series 142: 135–145.CrossRefGoogle Scholar
  19. Jackson, J. B. C. & A. G. Coates, 1986. Life cycles and evolution of clonal (modular) animals. Philosophical Transactions of the Royal Society B 313: 7–22.CrossRefGoogle Scholar
  20. Joschko, T. J., H. H. Buck, L. Gutow & A. Schroder, 2008. Colonization of an artificial hard substrate by Mytilus edulis in the German Bight. Marine Biological Research 4: 350–360.CrossRefGoogle Scholar
  21. Kruk-Dowgiałło, L. & A. Szaniawska, 2008. Gulf of Gdańsk and Puck Bay. In Schiewer, U. (ed.), Ecology of Baltic Coastal Waters. Springer, Berlin: 139–165.CrossRefGoogle Scholar
  22. Kuklinski, P., A. Sokolowski, M. Ziolkowska, P. Balazy, M. Novosel & D. K. A. Barnes, 2013. Growth rate of selected sheet-encrusting bryozoan colonies along a latitudinal transect: preliminary results. In Ernst, A., P. Schäfer & J. Scholz (eds), Bryozoan Studies 2010. Lecture Notes in Earth System Sciences, Vol. 1(143). Springer, Berlin: 149–160.Google Scholar
  23. Leidenberger, S., K. Harding & P. J. Johnsson, 2012. Ecology and distribution of the isopod genus Idotea in the Baltic Sea: key species in a changing environment. Journal of Crustacean Biology 32: 359–381.CrossRefGoogle Scholar
  24. Maki, J. S., D. Rittschof, J. D. Costlow & R. Mitchell, 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Marine Biology 97: 199–206.CrossRefGoogle Scholar
  25. Maughan, B. C., 2001. The effects of sedimentation and light on recruitment and development of a temperate, subtidal, epifaunal community. Journal of Experimental Marine Biology and Ecology 256: 59–71.CrossRefPubMedGoogle Scholar
  26. Mullineaux, L. S., 1988. The role of initial settlement in structuring a hard-substratum community in the deep sea. Journal of Experimental Marine Biology and Ecology 120: 247–261.CrossRefGoogle Scholar
  27. Mullineaux, L. S. & C. A. Butman, 1991. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Marine Biology 110: 93–104.CrossRefGoogle Scholar
  28. Qvarfordt, S., H. Kautsky & T. Malm, 2006. Development of fouling communities on vertical structures in the Baltic Sea. Estuarine, Coastal and Shelf Science 67: 618–628.CrossRefGoogle Scholar
  29. Robins, P. E., S. P. Neill, L. Giménez, S. R. Jenkins & S. K. Malham, 2013. Physical and biological controls on larval dispersal and connectivity in a highly energetic shelf sea. Limnology and Oceanography 58: 505–524.CrossRefGoogle Scholar
  30. Rodrîguez, S. R., F. P. Ojeda & N. C. Inestrosa, 1993. Settlement of benthic marine invertebrates. Marine Ecology Progress Series 97: 193–207.CrossRefGoogle Scholar
  31. Ryland, J. S., 2005. Bryozoa: an introductory overview. Denisia 16: 9–20.Google Scholar
  32. Seed, R. & T. H. Suchanek, 1992. Population and community ecology of Mytilus. In Gosling, E. (ed.), The Mussel Mytilus: Ecology, Physiology, Genetics, and Culture. Elsevier, Amsterdam: 87–169.Google Scholar
  33. Smoła, Z., 2012. The structure of benthic communities of the Planned Underwater Reserve Klif Orłowa. Master Thesis, University of Gdańsk, Gdynia (in Polish): 112 pp.Google Scholar
  34. Sokołowski, A., 2009. Tracing the flow of organic matter based upon dual stable isotope technique, and trophic transfer of trace metals in benthic food web of the Gulf of Gdańsk (the southern Baltic Sea). Wydawnictwo Uniwersytetu Gdańskiego, Sopot. 213 pp.Google Scholar
  35. Somerfield, P. J., K. R. Clarke & F. Olsgard, 2002. A comparison of the power of categorical and correlational tests applied to community ecology data from gradient studies. Journal of Animal Ecology 71: 581–593.CrossRefGoogle Scholar
  36. Svane, I. & J. K. Petersen, 2001. On the problems of epibioses, fouling and artificial reefs: a review. Marine Ecology 22: 169–188.CrossRefGoogle Scholar
  37. Todd, C. D., 1998. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe? Hydrobiologia 375–376: 1–21.CrossRefGoogle Scholar
  38. Todd, C. D. & S. J. Turner, 1986. Ecology of intertidal and sublittoral cryptic epifauna assemblages: I. Experimental rationale and the analysis of larval settlement. Journal of Experimental Marine Biology and Ecology 99: 199–231.CrossRefGoogle Scholar
  39. Turner, S. J. & C. D. Todd, 1993. The early development of epifaunal assemblages on artificial substrata at two intertidal sites on an exposed rocky shore in St Andrews Bay, NE Scotland. Journal of Experimental Marine Biology and Ecology 166: 251–272.CrossRefGoogle Scholar
  40. Underwood, A., 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge: 509 pp.Google Scholar
  41. Wahl, M., H. Link, N. Alexandridis, J. C. Thomason, M. Cifuentes, M. J. Costello, B. A. P. da Gama, K. Hillock, A. J. Hobday, M. J. Kaufmann, S. Keller, P. Kraufvelin, I. Krüger, L. Lauterbach, B. L. Antunes, M. Molis, M. Nakaoka, J. Nyström, Z. bin Radzi, B. Stockhausen, M. Thiel, T. Vance, A. Weseloh, M. Whittle, L. Wiesmann, L. Wunderer, T. Yamakita & M. Lenz, 2011. Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness. PLoS ONE 6(5): e19514.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Whitlatch, R. B., A. M. Lohrer, S. F. Thrush, R. D. Pridmore, J. E. Hewitt, V. J. Cummings & R. N. Zajac, 1998. Scale-dependent benthic recolonization dynamics: life stage-based dispersal and demographic consequences. Hydrobiologia 375(376): 217–226.CrossRefGoogle Scholar
  43. Witek, Z., S. Ochocki, M. Maciejowska, M. Pastuszak, J. Nakonieczny, B. Podgórska, J. M. Kownacka, M. Mackiewicz & M. Wrzesińska-Kwiecień, 1997. Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Marine Ecology Progress Series 148: 169–186.CrossRefGoogle Scholar
  44. Wołowicz, M., A. Sokołowski & R. Lasota, 2006. Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnology and Oceanography 51: 580–590.CrossRefGoogle Scholar
  45. Wootton, J. T., 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75: 151–165.CrossRefGoogle Scholar
  46. Young, C. M., 1982. Larval behaviour, predation and early post-settlement mortality as determinants of spatial distribution in subtidal solitary ascidians of the San Juan Islands, Washington. PhD thesis, University of Alberta, Alberta: 260 pp.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of OceanographyUniversity of GdańskGdyniaPoland
  2. 2.Institute of OceanologyPolish Academy of SciencesSopotPoland
  3. 3.Department of Life SciencesNatural History MuseumLondonUK

Personalised recommendations