Skip to main content

Prioritisation of aquatic invasive alien plants in South America with the US Aquatic Weed Risk Assessment

Abstract

Forty South American aquatic plant species were selected and categorised in four a priori status classes (alien naturalised, alien invasive, native and absent) according to expert opinion, for 16 South American regions (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Falklands Islands, French Guiana, Galapagos, Guyana, Paraguay, Peru, South Georgia and South Sandwich Islands, Suriname, Uruguay and Venezuela). The 40 aquatic plant species were assessed using the US Aquatic Weed Risk Assessment (USAqWRA) scheme for each of the 16 South American regions, for a total number of 644 assessments and for South America (153 assessments). The method was benchmarked against expert opinion (invasive, non-invasive). We ranked 17 of them as naturalised, and 15 as invasive species in at least one South American region. The USAqWRA distinguished between non-invaders and invaders with an overall accuracy of 84.9% in South America and 54.1% in the 16 regions, with areas under the curves equal to 0.893 and 0.853, at a threshold score of 51.5 and 43.5, respectively. The study highlights that the USAqWRA could represent a suitable screening protocol to prioritise aquatic species that have the potential to cause negative impacts, prevent attempts of introduction and to manage risky aquatic plants in South America.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Naturalised: alien plants that sustain self-replacing populations for at least 10 years without direct intervention by people (or in spite of human intervention) by recruitment from seed or ramets capable of independent growth, and do not necessarily invade natural, seminatural or human-made ecosystems (Richardson et al., 2000; Pyšek et al., 2004; Blackburn et al., 2011).

  2. Invasive: subset of naturalised plants that produce reproductive offspring, often in very large numbers, at considerable distances from the parent plants (approximate scales: >100 m in <50 years for taxa spreading by seeds and other propagules; >6 m in 3 years for taxa spreading by roots, rhizomes, stolons, or creeping stems), and thus have the potential to spread over a large area. (Richardson et al., 2000; Pyšek et al., 2004; Blackburn et al., 2011).

References

  • Almeida, W. R., A. V. Lopes, M. Tabarelli & I. R. Leal, 2015. The alien flora of Brazilian Caatinga: deliberate introductions expand the contingent of potential invaders. Biological Invasions 17: 51–56.

    Article  Google Scholar 

  • Andreu, J. & M. Vilà, 2010. Risk analysis of potential invasive plants in Spain. Journal for Nature Conservation 18: 34–44.

    Article  Google Scholar 

  • Aona, L. Y. S., G. M. da Costa, E. M. do Carmo, A. D. de Faria, E. F. Duarte & V. Bittrich, 2015. Aquatic and marsh plants from the Recôncavo basin of Bahia state, Brazil: checklist and life forms. Check List 11: 1806.

    Article  Google Scholar 

  • Arroyo, M. T. K., C. Marticorena, O. Matthei, & L. Cavieres, 2000. Plant invasions in Chile: present patterns and future predictions. Invasive species in a changing world: 385–421.

  • Azan, S., M. Bardecki & A. Laursen, 2015. Invasive aquatic plants in the aquarium and ornamental pond industries: a risk assessment for southern Ontario (Canada). Weed Research 55: 249–259.

    Article  Google Scholar 

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Bini, L. M. & S. M. Thomaz, 2005. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay). Aquatic Botany 83: 227–238.

    Article  Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26: 333–339.

    Article  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. Poulsen, M. Henry, H. Stevens & J. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Boltovskoy, D. & N. Correa, 2015. Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America. Hydrobiologia 746: 81–95.

    CAS  Article  Google Scholar 

  • Brunel, S., E. Branquart, G. Fried, J. Van Valkenburg, G. Brundu, U. Starfinger, S. Buholzer, A. Uludag, M. Joseffson & R. Baker, 2010. The EPPO prioritization process for invasive alien plants. EPPO bulletin 40: 407–422.

    Article  Google Scholar 

  • Carniatto, N., R. Fugia, S. M. Thomaz & E. R. Cunha, 2014. The invasive submerged macrophyte Hydrilla verticillata as a foraging habitat for small-sized fish. Natureza & Conservação 12: 30–35.

    Article  Google Scholar 

  • Carstensen, B., L. Gurrin, C. Ekstrom & M. Figurski, 2015. MethComp: functions for analysis of agreement in method comparison studies. R package version 1.22.2. http://CRAN.R-project.org/package=MethComp.

  • Champion, P. D., & J. S. Clayton, 2000. Border control for potential aquatic weeds. Stage 1. Weed risk model. Department of Conservation.

  • Champion, P. D. & J. Clayton, 2010. Assessing the Risk Posed to Micronesia by Invasive Aquatic Weeds. NIWA Client Report, Hamilton.

    Google Scholar 

  • Champion, P., D. Burnett & A. Petroeschevsky, 2008. Risk Assessment of Tradable Aquatic Plant Species in Australia. NIWA, Western Australia, O’Connor.

    Google Scholar 

  • Chown, S. L., K. A. Hodgins, P. C. Griffin, J. G. Oakeshott, M. Byrne & A. A. Hoffmann, 2015. Biological invasions, climate change and genomics. Evolutionary Applications 8: 23–46.

    Article  PubMed  Google Scholar 

  • Collen, B., F. Whitton, E. E. Dyer, J. E. Baillie, N. Cumberlidge, W. R. Darwall, C. Pollock, N. I. Richman, A. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.

    Article  PubMed  Google Scholar 

  • Conser, C., L. Seebacher, D. W. Fujino, S. Reichard & J. M. DiTomaso, 2015. The development of a plant risk evaluation (PRE) tool for assessing the invasive potential of ornamental plants. PLoS One 10: e0121053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Daehler, C. C., 1998. The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biological Conservation 84: 167–180.

    Article  Google Scholar 

  • Daehler, C. C. & D. A. Carino, 2000. Predicting invasive plants: prospects for a general screening system based on current regional models. Biological Invasions 2: 92–103.

    Article  Google Scholar 

  • Daehler, C. C., J. S. Denslow, S. Ansari & H. Kuo, 2004. A risk assessment system for screening out invasive pest plants from Hawai’i and other Pacific Islands. Conservation Biology 18: 360–368.

    Article  Google Scholar 

  • Dahlstrom, A., M. Campbell & C. Hewitt, 2012. Mitigating uncertainty using alternative information sources and expert judgement in aquatic non-indigenous species risk assessment. Aquatic Invasions 7: 567–575.

    Article  Google Scholar 

  • Delnatte, C. & J. Y. Meyer, 2012. Plant introduction, naturalization, and invasion in French Guiana (South America). Biological Invasions 14: 915–927.

    Article  Google Scholar 

  • Essl, F., S. Dullinger, W. Rabitsch, P. E. Hulme, K. Hülber, V. Jarošík, I. Kleinbauerc, F. Rausmanng, I. Kühnh, W. Nentwigi, M. Vilà, P. Genovesik, F. Gherardil, M. Desprez-Loustaum, A. Roquesn & P. Pyšek, 2011. Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences 108: 203–207.

    CAS  Article  Google Scholar 

  • Essl, F., S. Bacher, T. M. Blackburn, O. Booy, G.Brundu, S. Brunel, A. C. Cardoso, R. Eschen, B. Gallardo, B. Galil, E. García-Berthou, P. Genovesi, Q. Groom, C. Harrower, P. E. Hulme, S. Katsanevakis, M. Kenis, I. Kühn, S. Kumschick, A. F. Martinou, W. Nentwig, C. O’flynn, S. Pagad, J. Pergl, P. Pyšek, W. Rabitsch, D. M. Richardson, A. Roques, H. E. Roy, R. Scalera, S. Schindler, H. Seebens, S. Vanderhoeven, M. Vilà, J. R. U. Wilson, A. Zenetos, & J. M. Jeschke, 2015. Crossing frontiers in tackling pathways of biological invasions. BioScience 65: 769.

  • EPPO, 2015. Pest risk analysis for Alternanthera philoxeroides. EPPO, Paris. http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm.

  • European Commission, 2015. EUR 19 million in European funds to step up cross-border co-operation between French Guiana and neighbouring countries in the Amazon. Regional Policy. Web Site (http://ec.europa.eu/regional_policy/en/newsroom/news/2015/12/12-01-2015-eur-19-million-in-european-funds-to-step-up-cross-border-co-operation-between-french-guiana-and-neighbouring-countries-in-the-amazon).

  • Faraway, J. J., 2006. Extending the Linear Model with R: generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman and Hall, Boca Raton.

    Google Scholar 

  • Fuentes, N., E. Ugarte, I. Kühn & S. Klotz, 2010. Alien plants in southern South America. A framework for evaluation and management of mutual risk of invasion between Chile and Argentina. Biological Invasions 12: 3227–3236.

    Article  Google Scholar 

  • Gallardo, B., M. Clavero, M. I. Sánchez & M. Vilà, 2015. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22: 151–163.

    Article  PubMed  Google Scholar 

  • Gardener, M. R., R. O. Bustamante, I. Herrera, G. Durigan, V. R. Pivello, M. F. Moro, A. Stoll, B. Langdon, Z. Baruch, A. Rico, A. Arredondo-Nuñez & S. Flores, 2012. Plant invasions research in Latin America: fast track to a more focused agenda. Plant Ecology & Diversity 5: 225–232.

    Article  Google Scholar 

  • Gordon, D. R. & C. A. Gantz, 2011. Risk assessment for invasiveness differs for aquatic and terrestrial plant species. Biological Invasions 13: 1829–1842.

    Article  Google Scholar 

  • Gordon, D. R., D. A. Onderdonk, A. M. Fox & R. K. Stocker, 2008. Consistent accuracy of the Australian weed risk assessment system across varied geographies. Diversity and Distributions 14: 234–242.

    Article  Google Scholar 

  • Gordon, D. R., C. A. Gantz, C. L. Jerde, W. L. Chadderton, R. P. Keller & P. D. Champion, 2012. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States. PLoS One 7: e40031.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Govaerts, R., D. G. Frodin, A. Radcliffe-Smith & S. Carter, 2000. World Checklist and Bibliography of Euphorbiaceae (with Pandaceae). Royal Botanic Gardens, Kew.

    Google Scholar 

  • Groves, R. H., 2006. Are some weeds sleeping? Some concepts and reasons. Euphytica 148: 111–120.

    Article  Google Scholar 

  • Guézou, A., M. Trueman, C. E. Buddenhagen, S. Chamorro, A. M. Guerrero, P. Pozo & R. Atkinson, 2010. An extensive alien plant inventory from the inhabited areas of Galapagos. PLoS One 5: e10276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamel, S., N. G. Yoccoz, & J. M. Gaillard, 2016. Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists. Biological Reviews. doi:10.1111/brv.12254.

  • Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170.

    Article  Google Scholar 

  • Hayes, K. R. & S. C. Barry, 2008. Are there any consistent predictors of invasion success? Biological Invasions 10: 483–506.

    Article  Google Scholar 

  • Heinze, G. & M. Ploner, 2003. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 71: 181–187.

    Article  PubMed  Google Scholar 

  • Heinze, G., & M. Ploner, 2004. Technical Report 2/2004: A SAS-macro, S-PLUS library and R package to perform logistic regression without convergence problems. Section of Clinical Biometrics, Department of Medical Computer Sciences, Medical University of Vienna, Vienna.

  • Heinze, G., M. Ploner, D. Dunkler & H. Southworth, 2013. Logistf: Firth’s bias reduced logistic regression. R package version 1.21. http://CRAN.R-project.org/package=logistf.

  • Heleno, R. H., J. M. Olesen, M. Nogales, P. Vargas & A. Traveset, 2013. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proceedings of the Royal Society of London B: Biological Sciences 280: 17–50.

    Google Scholar 

  • Hulme, P. E., P. Pyšek, V. Jarošík, J. Pergl, U. Schaffner & M. Vila, 2012. Bias and error in current knowledge of plant invasions impacts. Trends Ecology Evolution 28: 212–218.

    Article  PubMed  Google Scholar 

  • Kato, H., K. Hata, H. Yamamoto, & T. Yoshioka, 2006. Effectiveness of the weed risk assessment system for the Bonin Islands. In: Koike, F., M. N. Clout, M. Kawamichi, M. De Poorter, K. Iwatsuki, (eds) Assessment and Control of Biological Invasion Risk. Shoukadoh Book Sellers and IUCN, Kyoto, Gland: 65–72.

  • Křivánek, M. & P. Pyšek, 2006. Predicting invasions by woody species in a temperate zone: a test of three risk assessment schemes in the Czech Republic. Diversity and Distributions 12: 319–327.

    Article  Google Scholar 

  • Kumschick, S. & D. M. Richardson, 2013. Species-based risk assessments for biological invasions: advances and challenges. Diversity and Distributions 19: 1095–1105.

    Article  Google Scholar 

  • Kumschick, S., S. Bacher, W. Dawson, J. Heikkilä, A. Sendek, T. Pluess, T. B. Robinson & I. Kühn, 2012. A conceptual framework for prioritization of invasive alien species for management according to their impact. NeoBiota 15: 69.

    Article  Google Scholar 

  • Kumschick, S., S. Bacher, T. Evans, Z. Marková, J. Pergl, P. Pyšek, S. Vaes-Petignat, G. van der Veer, M. Vilà & W. Nentwig, 2015. Comparing impacts of alien plants and animals in Europe using a standard scoring system. Journal of Applied Ecology 52: 552–561.

    Article  Google Scholar 

  • Mack, R. N., 2005. Predicting the identity of plant invaders: future contributions from horticulture. HortScience 40: 1168–1174.

    Google Scholar 

  • Matsuzaki, S-i S, N. Usio, N. Takamura & I. Washitani, 2009. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158: 673–686.

    Article  PubMed  Google Scholar 

  • Mauchamp, A., 1997. Threats from alien plant species in the Galápagos Islands. Conservation Biology 11: 260–263.

    Article  Google Scholar 

  • McClay, A., A. Sissons, C. Wilson & S. Davis, 2010. Evaluation of the Australian weed risk assessment system for the prediction of plant invasiveness in Canada. Biological Invasions 12: 4085–4098.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. Da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    CAS  Article  PubMed  Google Scholar 

  • Nishida, T., N. Yamashita, M. Asai, S. Kurokawa, T. Enomoto, P. C. Pheloung & R. H. Groves, 2009. Developing a pre-entry weed risk assessment system for use in Japan. Biological Invasions 11: 1319–1333.

    Article  Google Scholar 

  • Ormazabal, C., 1993. The conservation of biodiversity in Chile. Revista Chilena de Historia Natural 66: 383–402.

    Google Scholar 

  • Pauchard, A., L. Cavieres, R. Bustamante, P. Becerra & E. Rapoport, 2004. Increasing the understanding of plant invasions in southern South America: first symposium on Alien Plant Invasions in Chile. Biological Invasions 6: 255–257.

    Article  Google Scholar 

  • Pheloung, P. C., P. A. Williams & S. R. Halloy, 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management 57: 239–251.

    Article  Google Scholar 

  • Pyšek, P., D. Richardson, M. Rejmánek, G. Webster, M. Williamson & J. Kirschner, 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53: 131–143.

    Article  Google Scholar 

  • Pyšek, P., P. W. Lambdon, M. Arianoutsou, I. Kühn, J. Pino, & M. Winter, 2009. Alien Vascular Plants of Europe. Handbook of Alien Species in Europe. Springer Series in Invasion Ecology: 43–61.

  • Pyšek, P., V. Jarošík, P. E. Hulme, J. Pergl & M. Hejda, 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species traits and environment. Global Change Biology 18: 1725–1737.

    Article  PubMed Central  Google Scholar 

  • Richardson, D. M., P. Pyšek, M. Rejmánek, M. G. Barbour, F. D. Panetta & C. J. West, 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity Distribution 6: 93–107.

    Article  Google Scholar 

  • Rodriguez, L. F., 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biological Invasions 8: 927–939.

    Article  Google Scholar 

  • Rodrigues, R. B. & S. M. Thomaz, 2010. Photosynthetic and growth responses of Egeria densa to photosynthetic active radiation. Aquatic Botany 92: 281–284.

    Article  Google Scholar 

  • Roy, H., K. Schonrogge, H. Dean, J. Peyton, E. Branquart, S. Vanderhoeven, G. Copp, P. Stebbing, M. Kenis, & W. Rabitsch, 2014. Invasive alien species: framework for the identification of invasive alien species of EU concern. Report to the EC, project ENV. B. 298.

  • R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Rybicki, N. B. & J. M. Landwehr, 2007. Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality. Limnology and Oceanography 52: 1195–1207.

    Article  Google Scholar 

  • Santos, M. J., L. W. Anderson & S. L. Ustin, 2011. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biological Invasions 13: 443–457.

    Article  Google Scholar 

  • Seebens, H., M. T. Gastner & B. Blasius, 2013. The risk of marine bioinvasion caused by global shipping. Ecology Letters 16: 782–790.

    CAS  Article  PubMed  Google Scholar 

  • Seebens, H., F. Essl, W. Dawson, N. Fuentes, D. Moser, J. Pergl, P. Pyšek, M. van Kleunen, E. Weber, M. Winter & B. Blasius, 2015. Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology 21: 4128–4140.

    Article  PubMed  Google Scholar 

  • Simberloff, D., 2013. Invasive Species: what Everyone Needs to Know. Oxford University Press, Oxford.

    Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.

    Article  Google Scholar 

  • Strayer, D. L., 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 1199–1210.

    Article  PubMed  Google Scholar 

  • Soreng, R. J. & L. Fish, 2011. Catabrosa versus Colpodium (Poaceae: Poeae) in southern Africa, with a key to these genera and their species in Africa. Kew Bulletin 66: 101–110.

    Article  Google Scholar 

  • Thomaz, S. M., K. E. Kovalenko, J. E. Havel & L. B. Kats, 2015. Aquatic invasive species: general trends in the literature and introduction to the special issue. Hydrobiologia 746: 1–12.

    Article  Google Scholar 

  • Trueman, M., R. Atkinson, A. Guézou & P. Wurm, 2010. Residence time and human-mediated propagule pressure at work in the alien flora of Galapagos. Biological Invasions 12: 3949–3960.

    Article  Google Scholar 

  • van Kleunen, M., W. Dawson, F. Essl, J. Pergl, M. Winter, E. Weber, H. Kreft, P. Weigelt, J. Kartesz, M. Nishino, L. A. Antonova, J. F. Barcelona, F. J. Cabezas, D. Cárdenas, J. Cárdenas-Toro, N. Castaño, E. Chacón, C. Chatelain, A. L. Ebel, E. Figueiredo, N. Fuentes, Q. J. Groom, L. Henderson, Inderjit, A. Kupriyanov, S. Masciadri, J. Meerman, O. Morozova, D. Moser, D. L. Nickrent, A. Patzelt, P. B. Pelser, M. P. Baptiste, M. Poopath, M. Schulze, H. Seebens, W. Shu, J. Thomas, M. Velayos, J. J. Wieringa, M. J. VanderZanden, J. M. Casselman & J. B. Rasmussen, 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401: 464–467.

  • van Kleunen, M., W. Dawson, F. Essl, J. Pergl, M. Winter, E. Weber, H. Kreft, P. Weigelt, J. Kartesz, M. Nishino, L. Antonova, J. F. Barcelona, F. J. Cabezas, D. Cardenas, J. Cardenas-Toro, N. Castano, E. Chacón, C. Chatelain, A. L. Ebel, E. Figueiredo, N. Fuentes, Q. J. Groom, L. Henderson, A. Upriyanov, S. Masciadri, J. Meerman, O. Morozova, D. Moser, D. L. Nickrent, A. Patzelt, P. B. Pelser, M. P. Baptiste, M. Poopath, M. Schulze, H. Seebens, W. Shu, J. Thomas, M. Velayos, J. J. Wieringa & Petr Pyšek, 2015. Global exchange and accumulation of non-native plants. Nature 525: 100–104.

    Article  PubMed  Google Scholar 

  • Verbrugge, L., G. van der Velde, J. Hendriks, H. Verreycken & R. Leuven, 2012. Risk classifications of aquatic non-native species: application of contemporary European assessment protocols in different biogeographical settings. Aquatic Invasions 7: 49–58.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank A. Pauchard, J. Urrutia, R. Bustamante, S. Magela-Thomaz and L. J. Cumana Campos for providing useful information and literature. We also wish to thank the two anonymous reviewers whose recommendations greatly helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Lozano.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 212 kb)

Supplementary material 2 (DOC 219 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lozano, V., Brundu, G. Prioritisation of aquatic invasive alien plants in South America with the US Aquatic Weed Risk Assessment. Hydrobiologia 812, 115–130 (2018). https://doi.org/10.1007/s10750-016-2858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2858-8

Keywords

  • Negative impacts
  • Non-native aquatic species
  • Aquatic plants
  • Risk assessment
  • Prioritisation