, Volume 784, Issue 1, pp 65–79 | Cite as

Leaf litter decomposition on insular lentic systems: effects of macroinvertebrate presence, leaf species, and environmental conditions

  • Pedro M. RaposeiroEmail author
  • Verónica Ferreira
  • Rosa Guri
  • Vítor Gonçalves
  • Gustavo M. Martins
Primary Research Paper


The decomposition of leaf litter of terrestrial origin is a fundamental process in aquatic ecosystems in forest contexts. Little is known about what drives leaf litter decomposition in oceanic islands. We examined the relative importance of leaf litter identity (Acacia melanoxylon, Pittosporum undulatum, Morella faya) and environmental conditions on litter decomposition in seven lakes in the oceanic archipelago of Azores for 28 and 56 days. Leaf litter was incubated in coarse and fine mesh bags for the assessment of the relative contribution of macroinvertebrates to leaf litter decomposition. Leaf litter mass loss generally did not differ between mesh sizes, suggesting that in these lakes macroinvertebrates generally have a negligible role on leaf decomposition. Leaf litter decomposition was in the order M. faya < A. melanoxylon < P. undulatum. A negative correlation was found between leaf litter mass loss and lignin concentration. Mass loss of P. undulatum was related to lake elevation and chlorophyll a (taken as surrogates for water temperature and dissolved nutrient availability, respectively), whereas mass loss of M. faya was related to chlorophyll a on day 56. These results suggest that changes in the composition of the leaf litter input and environmental conditions can affect leaf litter decomposition in Azorean lakes, with potential consequences for nutrient cycling.


Acacia melanoxylon Macroinvertebrates Azores Pittosporum undulatum Oceanic islands Morella faya 



Part of this study was financed by the Fundo Regional da Ciência e Tecnologia (M3.1.7/F/009/2011). PMR, GMM, and VF were supported by Fundação para a Ciência e Tecnologia (SFRH/BPD/99461/2014, SFRH/BPD/108114/2015 and IF/00129/2014, respectively). We thank the Freshwater Ecology Research Group of the University of the Azores for the support provided during the field and laboratory work and CIGPT for helping in making the maps. This work was also funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and by National Funds through FCT - Foundation for Science and Technology under the UID/BIA/50027/2013 and POCI-01-0145-FEDER-006821.

Supplementary material

10750_2016_2852_MOESM1_ESM.docx (97 kb)
Supplementary material 1 (DOCX 97 kb)


  1. Ágoston-Szabó, E. & M. Dinka, 2008. Decomposition of Typha angustifolia and Phragmites australis in the littoral zone of a shallow lake. Biologia 63(6): 1104–1110.CrossRefGoogle Scholar
  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 35: 32–46.Google Scholar
  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth.Google Scholar
  4. APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington DC.Google Scholar
  5. Bassett, I. E., J. R. Beggs & Q. Paynter, 2010. Decomposition dynamics of invasive alligator weed compared with native sedges in a Northland lake. New Zealand Journal of Ecology 34(3): 324–331.Google Scholar
  6. Benstead, J. P., J. G. March, C. M. Pringle, K. C. Ewel & J. W. Short, 2009. Biodiversity and ecosystem function in species-poor communities: community structure and leaf litter breakdown in a Pacific island stream. Journal of the North American Benthological Society 28(2): 454–465.CrossRefGoogle Scholar
  7. Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32(1): 159–181.CrossRefGoogle Scholar
  8. Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37: 163–172.CrossRefPubMedGoogle Scholar
  9. Carlson, R. E., 1977. A trophic stste index for lakes’. Limnology and Oceanography 22: 361–369.CrossRefGoogle Scholar
  10. Clarke, K. R. & R. N. Gorley, 2001. PRIMER v5: User Manual/Tutorial. Plymouth, UKPRIMER-E: 91.Google Scholar
  11. Climate-Atlas, 2011. Climate atlas of the archipelagos of Canary islands, Madeira and the Azores-Air temperature and precipitation. Agência Estatal de Meterologia e Agência Estatal de Meterologia, Lisboa.Google Scholar
  12. Cornut, J., A. Elger, D. Lambrigot, P. Marmonier & E. Chauvet, 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biology 55: 2541–2556.CrossRefGoogle Scholar
  13. Covich, A. P., 2009. Freshwater ecology. In Gillespie, R. G. & D. A. Clague (eds), Encyclopedia of Islands. University of California Press, Berkeley: 343–347.Google Scholar
  14. Elias, R. & E. Dias, 2009. Gap dynamics and regeneration strategies in Juniperus-Laurus forests of the Azores Islands. Plant Ecology 200: 179–189.CrossRefGoogle Scholar
  15. Fernandes, I., S. Seena, C. Pascoal & F. Cássio, 2014. Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshwater Biology 59: 2390–2399.CrossRefGoogle Scholar
  16. Ferreira, V. & E. Chauvet, 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.CrossRefGoogle Scholar
  17. Ferreira, V., V. Gulis & M. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.CrossRefPubMedGoogle Scholar
  18. Ferreira, V., A. C. Encalada & M. A. S. Graça, 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31: 945–962.CrossRefGoogle Scholar
  19. Ferreira, V., E. Chauvet & C. Canhoto, 2014a. Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 72: 206–216.CrossRefGoogle Scholar
  20. Ferreira, V., V. Gulis, C. Pascoal & M. A. S. Graça, 2014b. Chapter 18: Stream pollution and fungi. In Jones, G., K. Hyde & K.-L. Pang (eds), Freshwater Fungi and Fungus-like Organisms. De Gruyter Series: Marine and Freshwater Botany. De Gruyter, Berlin: 389–412.Google Scholar
  21. Ferreira, V., B. Castagneyrol, J. Koricheva, V. Gulis, E. Chauvet & M. A. S. Graça, 2015. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90: 669–688.CrossRefPubMedGoogle Scholar
  22. Ferreira, V., P. M. Raposeiro, A. Pereira, A. Cruz, A. C. Costa, M. A. S. Graça & V. Gonçalves, 2016. Leaf litter decomposition in remote oceanic islands streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology 61(5): 783–799.CrossRefGoogle Scholar
  23. Frainer, A., J. Jabiol, M. O. Gessner, A. Bruder, E. Chauvet & B. G. McKie, 2015. Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos. doi: 10.1111/oik.02687.Google Scholar
  24. France, R. L. & R. H. Peters, 1995. Predictive model of the effects on lke metabolism of decreased airborne litterfall through riparian deforestation. Conservation Biology 9: 1578–1586.CrossRefGoogle Scholar
  25. García-Palacios, P., E. A. Shaw, D. H. Wall & S. Hättenschwiler, 2016. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters. doi: 10.1111/ele.12590.Google Scholar
  26. Gasith, A. & A. D. Hosier, 1976. Airborne litterfall as a source of organic matter in lakes1. Limnology and Oceanography 21: 253–258.CrossRefGoogle Scholar
  27. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  28. Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.CrossRefGoogle Scholar
  29. Goering, H. K. & P. J. Van Soest, 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural Handbook No. 379. ARS-USDA, Washington DC.Google Scholar
  30. Gonçalves, V., A. Costa, P. Raposeiro, H. Marques, A. Cunha, J. Ramos, A. Cruz & C. Pereira, 2009. Caracterização biológica das massas de água interiores das Ilhas de São Miguel e Santa Maria. CCPA/Departamento de Biologia, Universidade dos Açores, Ponta Delgada.Google Scholar
  31. Gonçalves, V., A. Costa, P. Raposeiro, H. Marques, A. Cunha, J. Ramos, A. Cruz, C. Pereira & J. Vilaverde, 2013a. Monitorização das massas de água interiores da Região Hidrográfica Açores. Relatório Anual de 2012 (R5/2012). CIBIO Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada.Google Scholar
  32. Gonçalves, A. L., M. A. S. Graça & C. Canhoto, 2013b. The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology 6: 546–553.CrossRefGoogle Scholar
  33. Graça, M. A. S., F. Bärlocher & M. O. Gessner, 2005. Methods to study litter decomposition. A practical guide. Springer, Dordrecht.Google Scholar
  34. Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.CrossRefGoogle Scholar
  35. Gulis, V., V. Ferreira & M. A. S. Graça, 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669.CrossRefGoogle Scholar
  36. Hieber, M. & M. O. Gessner, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038.CrossRefGoogle Scholar
  37. Larned, S. T., R. A. Kinzie, A. P. Covich & C. T. Chong, 2003. Detritus processing by endemic and non-native Hawaiian stream invertebrates: a microcosm study of species-specific effects. Archiv für Hydrobiologie 156: 241–254.CrossRefGoogle Scholar
  38. Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.CrossRefGoogle Scholar
  39. Lima-Fernandes, E., I. Fernandes, A. Pereira, P. Geraldes, F. Cássio & C. Pascoal, 2014. Eutrophication modulates plant -litter diversity effects on litter decomposition in streams. Freshwater Science 3: 31–41.Google Scholar
  40. Lourenço, P., V. Medeiros, A. Gil & L. Silva, 2011. Distribution, habitat and biomass of Pittosporum undulatum, the most important woody plant invader in the Azores Archipelago. Forest Ecology and Management 262: 178–187.CrossRefGoogle Scholar
  41. McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.CrossRefGoogle Scholar
  42. Oscoz, J., D. Galicia & R. Miranda, 2011. Identification Guides of Freshwater Macroinvertebrates of Spain. Springer, Dordrecht.CrossRefGoogle Scholar
  43. Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing Rrtes. Journal of the North American Benthological Society 16: 750–759.CrossRefGoogle Scholar
  44. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.CrossRefGoogle Scholar
  45. Pope, R. J., A. M. Gordon & N. K. Kaushik, 1999. Leaf litter colonization by invertebrates in the littoral zone of a small oligotrophic lake. Hydrobiologia 392: 99–112.CrossRefGoogle Scholar
  46. Porteiro, J., 2000. Lagoas dos Açores: elementos de suporte ao planeamento integrado. Dissertação para a obtenção do grau de Doutor em Geografia. Departamento de Biologia, Universidade dos Açores, Ponta Delgada, 344 pp.Google Scholar
  47. Raposeiro, P. M., A. C. Costa & S. H. Hughes, 2011. Environmental factors-spatial and temporal variation of chironomid communities in oceanic island streams (Azores archipelago). Annales de Limnologie-International Journal of Limnology 47: 325–338.CrossRefGoogle Scholar
  48. Raposeiro, P. M., A. M. Cruz, S. J. Hughes & A. C. Costa, 2012. Azorean freshwater invertebrates: status, threats and biogeographic notes. Limnetica 31: 13–22.Google Scholar
  49. Raposeiro, P. M., S. J. Hughes & A. C. Costa, 2013. Environmental drivers–spatial and temporal variation of macroinvertebrate communities in island streams: the case of the Azores Archipelago. Fundamental and Applied Limnology/Archiv fur Hydrobiologie 182: 337–350.CrossRefGoogle Scholar
  50. Raposeiro, P. M., G. M. Martins, I. Moniz, A. Cunha, A. C. Costa & V. Gonçalves, 2014. Leaf litter decomposition in remote oceanic islands: the role of macroinvertebrates versus microbial decomposition of native versus exotic plant species. Limnologica-Ecology and Management of Inland Waters 45: 80–87.CrossRefGoogle Scholar
  51. Rosemond, A. D., C. M. Pringle, A. Ramírez, M. J. Paul & J. L. Meyer, 2002. Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnology and Oceanography 47: 278–289.CrossRefGoogle Scholar
  52. Sabetta, L., M. L. Costantini, O. Maggi, A. M. Persiani & L. Rossi, 2000. Interactions between detritivores and microfungi during the leaf detritus decomposition in a volcanic lake (Lake Vico–central Italy). Hydrobiologia 439: 49–60.CrossRefGoogle Scholar
  53. Schindler, M. H. & M. O. Gessner, 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90: 1641–1649.CrossRefPubMedGoogle Scholar
  54. Smith, G. C., A. P. Covich & A. M. D. Brasher, 2003. An ecological perspective on the biodiversity of tropical island streams. BioScience 53: 1048–1051.CrossRefGoogle Scholar
  55. Sondergaard, M. & E. Jeppesen, 2007. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology 44: 1089–1094.CrossRefGoogle Scholar
  56. Suberkropp, K., 1995. The influence of nutrients on fungal growth, productivity, and sporulation during leaf breakdown in streams. Canadian Journal of Botany 73: 1361–1369.CrossRefGoogle Scholar
  57. Tachet, H., M. Bournand & P. Richoux, 2006. Introduction à l´étude des macroinvertebrés des eaux douces. Université Claude Bernard, Lyon: 155 pp.Google Scholar
  58. Taylor, B. R. & E. E. Chauvet, 2014. Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia 721: 239–250.CrossRefGoogle Scholar
  59. Tuchman, N. C., 1993. Relative importance of microbes versus macroinvertebrate shredders in the process of leaf decay in lakes of differing pH. Canadian Journal of Fisheries and Aquatic Sciences 50: 2707–2712.CrossRefGoogle Scholar
  60. van Dokkum, H. P., D. M. E. Slijkerman, L. Rossi & M. L. Costantini, 2002. Variation in the decomposition of Phragmites australis litter in a monomictic lake: the role of gammarids. Hydrobiologia 482: 69–77..CrossRefGoogle Scholar
  61. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter onputs. Science 277: 102–104.CrossRefGoogle Scholar
  62. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.CrossRefGoogle Scholar
  63. Whittaker, R. J. & J. M. Fernández-Palacios, 2007. Island Biogeography. Oxford University Press, Oxford.Google Scholar
  64. Woodward, G., M. O. Gessner, P. S. Giller, V. Gulis, S. Hladyz, A. Lecerf, B. Malmqvist, B. G. McKie, S. D. Tiegs, H. Cariss, M. Dobson, A. Elosegi, V. Ferreira, M. A. S. Graça, T. Fleituch, J. O. Lacoursière, M. Nistorescu, J. Pozo, G. Risnoveanu, M. Schindler, A. Vadineanu, L. B. M. Vought & E. Chauvet, 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336: 1438–1440.CrossRefPubMedGoogle Scholar
  65. Young, R. G., C. D. Matthaei & C. R. Townsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27: 605–625.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresPonta DelgadaPortugal
  2. 2.Departamento de Biologia da Universidade dos AçoresPonta DelgadaPortugal
  3. 3.MARE - Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity GroupPonta DelgadaPortugal

Personalised recommendations