Advertisement

Hydrobiologia

, Volume 784, Issue 1, pp 51–63 | Cite as

Production of phosphatase and extracellular stalks as adaptations to phosphorus limitation in Didymosphenia geminata (Bacillariophyceae)

  • Jon BrayEmail author
  • Jon O’Brien
  • Jon S. Harding
Primary Research Paper

Abstract

Didymosphenia geminata is a benthic bloom-forming diatom that is invasive in many temperate, oligotrophic freshwater ecosystems. D. geminata blooms are unusual, resulting from prolific basal stalk production stimulated by phosphorus limitation. The adaptive value of stalk production and bloom development is disputed. We examined blooms in relation to stalk biomass, biovolume and phosphatase activity. An austral summer survey of 15 sites within the Waitaki River of New Zealand compared reference communities (no detectable D. geminata), with those impacted by high and low D. geminata biomass. Sites were compared for differences in phosphatase location and activity using chromogenic substrates, community composition using morphological identifications, and overlying water and pore-water chemistry. Experimental microcosms subjected live proliferations to varied phosphate concentrations, and phosphatase rates and location were examined. Survey results identified phosphatase activity increased with D. geminata biomass, with lowest rates in reference communities. Pools of labile nutrients were detected in D. geminata mats, and in vitro hydrolysis rates were rapid in replete phosphoester conditions (~0.2 mmol l−1 h−1 cm−2 at 16°C), with activity concentrated on stalks. Our results suggest D. geminata bloom development is an adaptation to maximise supply of phosphate under chronic phosphorus limitation.

Keywords

Phosphatase Nutrient cycling Didymosphenia geminata Periphyton Phosphorus 

Abbreviations

AFDM

Ash free dry mass

PMEase

Phosphomonoesterase activity

PDEase

Phosphodiesterase activity

BCIP-NBT

5-Bromo-4-chloro-3-indolyl phosphate–nitroblue tetrazolium

DRP

Dissolved reactive phosphorus

FOP

Filterable organic phosphorus

FHP

Filterable hydrolyzable phosphorus

pNPP

4-Nitrophenyl phosphate disodium salt hexahydrate

pi

Inorganic phosphate

po

Organic phosphorus

Notes

Acknowledgments

The Department of Conservation, the Ministry for Primary Industries and the Miss E L Hellaby Indigenous Grassland Research Trust funded the research. The samples were transported live following permissions obtained from the Ministry for Primary Industries under S.52 of the Biosecurity Act 1993. We thank Hayley Stoddart for water chemistry analysis and anonymous reviewers, Elizabeth Graham, Catherine Febria and particularly Paul Broady and David Hamilton for their helpful comments on drafts.

Supplementary material

10750_2016_2851_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)
10750_2016_2851_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)

References

  1. Aboal, M., S. Marco, E. Chaves, I. Mulero & A. Garcıá-Ayala, 2012. Ultrastructure and function of stalks of the diatom Didymosphenia geminata. Hydrobiologia 695: 17–24.CrossRefGoogle Scholar
  2. Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.Google Scholar
  3. Bjoerkman, K. & D. M. Karl, 1994. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Marine Ecology Progress Series 111: 265–275.CrossRefGoogle Scholar
  4. Blanco, S. & L. Ector, 2009. Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia 88: 347–422.CrossRefGoogle Scholar
  5. Block, M. A. & A. R. Grossman, 1987. Identification and purification of a derepressible alkaline phosphatase from Anacystis nidulans R21. Plant Physiology 86: 1179–1184.CrossRefGoogle Scholar
  6. Boavida, M. J., 1990. Natural plankton phosphatases and the recycling of phosphorus. Verhandlung Internationale Vereinigung Limnologie 24: 258–259.Google Scholar
  7. Bothwell, M. L. & C. Kilroy, 2011. Phosphorus limitation of the freshwater benthic diatom Didymosphenia geminata determined by the frequency of dividing cells. Freshwater Biology 56: 565–578.CrossRefGoogle Scholar
  8. Bothwell, M. L., B. W. Taylor & C. Kilroy, 2014. The Didymo story: the role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Research 29: 229–236.CrossRefGoogle Scholar
  9. Bray, J. P., 2014. The invasion ecology of Didymosphenia geminata. Unpublished PhD thesis, University of Canterbury.Google Scholar
  10. Campbell, M. L., 2008. Organism impact assessment: risk analysis for post-incursion management. ICES Journal of Marine Science 65(5): 795–804.CrossRefGoogle Scholar
  11. Cao, X., C. Song & Y. Zhou, 2010. Limitations of using extracellular alkaline phosphatase activities as a general indicator for describing P deficiency of phytoplankton in Chinese shallow lakes. Journal of Applied Phycology 22: 33–41.CrossRefGoogle Scholar
  12. Chróst, R. J. & W. Siuda, 2002. Ecology of Microbial Enzymes in Lake Ecosystems. In Burns, R. & R. Dick (eds), Enzymes in the Environment Activity, Ecology, and Applications. Marcel Dekker Inc, New York.Google Scholar
  13. Cullis, J. D. S., C. Gillis, M. L. Bothwell & C. Kilroy, 2012. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams. Journal of Geophysical Research 117: 1–11.CrossRefGoogle Scholar
  14. Cunha, A., A. Almeida, F. J. R. C. Coelho, N. C. M. Gomes, V. Oliveira & A. L. Santos, 2010. Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology:124–135.Google Scholar
  15. Darwin, C., 1859. On the origin of species by means of natural selection, or the preservation of the favoured races in the struggle for life. John Murray, London.CrossRefGoogle Scholar
  16. de Brouwer, J. F. C., K. Wolfstein, G. K. Ruddy, T. E. R. Jones & L. J. Stal, 2005. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microbial Ecology 49(4): 501–512.CrossRefPubMedGoogle Scholar
  17. Doonan, B. B. & T. E. Jensen, 1977. Ultrastructural localization of alkaline phosphatase in the blue-green bacterium Plectonema boryanum. Journal of Bacteriology 132: 967–973.PubMedPubMedCentralGoogle Scholar
  18. Ellwood, N. T. W. & B. A. Whitton, 2007. Importance of organic phosphate hydrolyzed in stalks of the lotic diatom Didymosphenia geminata and the possible impact of atmospheric and climatic changes. Hydrobiologia 592: 121–133.CrossRefGoogle Scholar
  19. Funk, J. L. & P. M. Vitousek, 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature 446(7139): 1079–1081.CrossRefPubMedGoogle Scholar
  20. Gould, S. J. & R. C. Lewontin, 1979. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B, Biological Sciences 205(1161): 581–598.CrossRefGoogle Scholar
  21. Gretz, M. R., 2008. The stalks of didymo. In: M. L. Bothwell and S. A. Spaulding (eds), Proceedings of the 2007 International Workshop on Didymosphenia geminata. Canadian Technical Report of Fisheries and Aquatic Sciences 2795, p. 58.Google Scholar
  22. Healey, F. P., 1982. Phosphate. In: N. G. Carr and B. A. Whitton (eds), The Biology of Cyanobacteria. University of California Press, Berkeley, pp. 105–124.Google Scholar
  23. Heberling, J. M. & J. D. Fridley, 2013. Resource-use strategies of native and invasive plants in Eastern North American forests. New Phytologist 200(2): 523–533.CrossRefPubMedGoogle Scholar
  24. Hernández, I., J. A. Fernándex & F. X. Niell, 1993. Influence of phosphorus status on the seasonal variation of alkaline phosphatase activity in Porphyra umbilicalis (L.) Kützing. Journal of Experimental Marine Biology and Ecology 173: 191–196.CrossRefGoogle Scholar
  25. Hernández, I., S.-J. Hwang & R. T. Heath, 1996. Measurement of phosphomonoesterase activity with a radiolabelled glucose-6-phosphate. Role in the phosphorus requirement of phytoplankton and bacterioplankton in a temperate mesotrophic lake. Archiv für Hydrobiologie 137: 265–280.Google Scholar
  26. Hernández, I., F. X. Niell & B. A. Whitton, 2002. Phosphatase activity of benthic marine algae. An overview. Journal of Applied Phycology 14: 475–487.CrossRefGoogle Scholar
  27. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35(2): 403–424.CrossRefGoogle Scholar
  28. Hoppe, H., 2003. Phosphatase activity in the sea. Hydrobiologia 493(1–3): 187–200.CrossRefGoogle Scholar
  29. Ihlenfeldt, M. J. A. & J. Gibson, 1975. Phosphate utilization and alkaline phosphatase activity in Anacystis nidulans (Synechococcus). Archives of Microbiology 102: 23–28.CrossRefPubMedGoogle Scholar
  30. Ireland, M. E., J. A. Kerby, E. M. Quardokus, J. P. Reilly & Y. V. Brun, 2002. Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Molecular Microbiology 45: 1029–1041.CrossRefPubMedGoogle Scholar
  31. John, D. M., B. A. Whitton & A. J. Brook, 2002. The Freshwater Algal Flora of the British Isles: An identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge.Google Scholar
  32. Kilroy, C. & M. L. Bothwell, 2010. Factors affecting the growth and survival of Didymosphenia geminata in rivers and their spring fed tributaries: update of experimental investigations to June 2010. NIWA Client Report: CHC2010-0.Google Scholar
  33. Kilroy, C. & M. L. Bothwell, 2011. Environmental control of stalk length in the bloom-forming, freshwater benthic diatom Didymosphenia geminata (Bacillariophyceae). Journal of Phycology 47(5): 981–989.CrossRefPubMedGoogle Scholar
  34. Kilroy, C. & M. L. Bothwell, 2012. Didymosphenia geminata growth rates and bloom formation in relation to ambient dissolved phosphorus concentration. Freshwater Biology 57: 641–653.CrossRefGoogle Scholar
  35. Kilroy, C. & M. Unwin, 2011. The arrival and spread of the bloom-forming, freshwater diatom, Didymosphenia geminata. New Zealand. Aquatic invasions 6(3): 249–262.CrossRefGoogle Scholar
  36. Kilroy, C., S. T. Larned & B. J. F. Biggs, 2009. The non-indigenous diatom Didymosphenia geminata alters benthic communities in New Zealand rivers. Freshwater Biology 54(9): 1990–2002.CrossRefGoogle Scholar
  37. Kirkwood, A. E., T. Shea, L. Jackson & E. McCcauley, 2007. Didymosphenia geminata in two Alberta headwater rivers: an emerging invasive species that challenges conventional views on algal bloom development. Canadian Journal of Fisheries and Aquatic Sciences 64(12): 1703–1709.CrossRefGoogle Scholar
  38. Krammer, K. & H. Lange-Bertalot, 1991. Süßwasserflora von Mitteleuropa. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. VEB Gustav Fischer Verlag, Jena. Fischer Verlag, Stuttgart.Google Scholar
  39. Krammer, K. & H. Lange-Bertalot, 1991. Süßwasserflora von Mitteleuropa. Bacillariophyceae 4. Teil: Achnanthaceae. VEB Gustav Fischer Verlag, Jena. Fischer Verlag, Stuttgart.Google Scholar
  40. Krammer, K. & H. Lange-Bertalot, 1995. Süßwasserflora von Mitteleuropa: Bacillariophyceae. 1. Teil: Naviculaceae. Süßwasserflora von Mitteleuropa. – Band 2/1, 876 pp., VEB Gustav Fischer Verlag, Jena. Fischer Verlag, Stuttgart.Google Scholar
  41. Larned, S. T., D. Arscott, N. Blair, W. Jarvie, D. Jellyman, K. Lister, M. Schallenberg, S. Sutherland, K. Vopel & R. Wilcock, 2007. Ecological studies of Didymosphenia geminata in New Zealand, 2006-2007. NIWA Client Report: CHC2007-070 for MAF Biosecurity New Zealand.Google Scholar
  42. Larned, S. T., A. I. Packman, D. R. Plew & K. Vopel, 2011. Interactions between the mat-forming alga Didymosphenia geminata and its hydrodynamic environment. Limnology & Oceanography: Fluids & Environment 1: 4–22.Google Scholar
  43. Leishman, M. R., V. P. Thomson & J. Cooke, 2010. Native and exotic invasive plants have fundamentally similar carbon capture strategies. Journal of Ecology 98: 28–42.CrossRefGoogle Scholar
  44. Manoylov, K. M., 2009. Intra- and interspecific competition for nutrients and light in diatom cultures. Journal of Freshwater Ecology 24: 145–157.CrossRefGoogle Scholar
  45. Mulholland, P. J., A. D. Steinman, A. V. Palumbo, J. W. Elwood & D. B. Kirschtel, 1991. Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology 72(3): 966–982.CrossRefGoogle Scholar
  46. Ordonez, A. & H. Olff, 2013. Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Global Ecology and Biogeography 22(6): 648–658.CrossRefGoogle Scholar
  47. Peterson, C. G. & N. B. Grimm, 1992. Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. Journal of the North American Benthological Society 11: 20–36.CrossRefGoogle Scholar
  48. Pinheiro, J. & D. Bates, 2014. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models R. http://www.R-project.org/.
  49. R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  50. Reid, B. & R. Torres, 2014. Didymosphenia geminata invasion in South America: ecosystem impacts and potential biogeochemical state change in Patagonian rivers. Acta Oecologica 54: 101–109.CrossRefGoogle Scholar
  51. Rengefors, K., K. Pettersson, T. Blenckner & D. M. Anderson, 2001. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. Journal of Plankton Research 23(4): 435–443.CrossRefGoogle Scholar
  52. Schmidt, J. M. & R. Y. Staner, 1996. The development of cellular stalks in bacteria. Journal of Cell Biology 28(3): 423–436.CrossRefGoogle Scholar
  53. Spaulding, S. A. & L. Elwell, 2007. Increase in nuisance blooms and geographic expansion of the freshwater diatom Didymosphenia geminata: recommendations for response. United States Environmental Protection Agency, White Paper.Google Scholar
  54. Steinman, A. D. & P. J. Mulholland, 2006. Phosphorus limitation, uptake, and turnover in benthic stream algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, Burlington: 187–212.Google Scholar
  55. Strojsová, A., J. Vrba, J. Nedoma, J. Komárková & P. Znachor, 2003. Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. European Journal of Phycology 38(4): 295–306.CrossRefGoogle Scholar
  56. Sundareshwar, P. V., S. Upadhayay, M. Abessa, S. Honomichl, B. Berdanier, S. A. Spaulding, C. Sandvik & A. Trennepohl, 2011. Didymosphenia geminata: algal blooms in oligotrophic streams and rivers. Geophysical Research Letters 38.Google Scholar
  57. Tarapchak, S. J. & R. A. Moll, 1990. Phosphorus uptake by phytoplankton and bacteria in Lake Michigan. Journal of Plankton Research 12: 743–758.CrossRefGoogle Scholar
  58. Taylor, B. W. & M. L. Bothwell, 2014. The origin of invasive microorganisms matters for science, policy, and management: the case of Didymosphenia geminata. Bioscience 64: 531–538.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tyler, A. C., K. J. McFlathery & I. C. Anderson, 2003. Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon. Limnology and Oceanography 48(6): 2125–2137.CrossRefGoogle Scholar
  60. Underwood, G. J. C., M. Boulcott & C. A. Raines, 2004. Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. Journal of Phycology 40: 293–304.CrossRefGoogle Scholar
  61. Wetzel, R., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.Google Scholar
  62. Wetzel, R. G., 1993a. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.CrossRefGoogle Scholar
  63. Wetzel, R. G., 1993b. Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Netherlands Journal of Aquatic Ecology 27: 3–9.CrossRefGoogle Scholar
  64. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.CrossRefGoogle Scholar
  65. Whitton, B. A. & C. Neal, 2011. Organic phosphate in UK rivers and its relevance to algal and bryophyte surveys. International Journal of Limnology 47: 3–10.CrossRefGoogle Scholar
  66. Whitton, B. A., A. H. Al-Shehri, N. T. W. Ellwood & B. L. Turner, 2005. Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In Turner, B. L., E. Frossard & D. S. Baldwin (eds), Organic Phosphorus in the Environment. Commonwealth Agricultural Bureau, Wallingford: 205–241.CrossRefGoogle Scholar
  67. Whitton, B. A., N. T. W. Ellwood & B. Kawecka, 2009. Biology of the freshwater diatom Didymosphenia: a review. Hydrobiologia 630(1): 1–37.CrossRefGoogle Scholar
  68. Young, E. B., R. C. Tucker & L. A. Pansch, 2010. Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. Journal of Phycology 46(1): 93–101.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Applied EcologyUniversity of CanberraCanberraAustralia
  2. 2.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  3. 3.Department of BiologyCanisus CollegeBuffaloUSA

Personalised recommendations