, Volume 784, Issue 1, pp 35–49 | Cite as

First spatio-temporal study of macroinvertebrates in the Santa Cruz River: a large glacial river about to be dammed without a comprehensive pre-impoundment study

  • Marina TagliaferroEmail author
  • Miguel Pascual
Primary Research Paper


The Santa Cruz River is the last free-flowing river in Argentinean Patagonia. Two dams are projected, and no comprehensive pre-impoundment study has been undertaken. The present study investigated macroinvertebrate communities along three different hydrological periods and at three river sections located upstream and downstream of future dams. Fifty-three macroinvertebrate taxa were identified, with the most abundant orders being Ephemeroptera, Plecoptera, Coleoptera, and Crustacea (particularly amphipods). Ordination methods (CCA) and generalized linear models (GLM) were applied. According to the CCA, the main environmental variables related to macroinvertebrate density were temperature, suspended solids, depth, and substrate size. For the GLM, the main factors associated with macroinvertebrate abundance were location and hydrological period, and variables with the highest influences were temperature, substrate size, current speed, and depth. We anticipate that dam construction will modify in-stream habitat conditions, leading to changes in (i) macroinvertebrate community structure and (ii) local fish abundance due to loss of key prey taxa.


Dams Large rivers GLM Southern Hemisphere Benthos 



The authors wish to acknowledge the contributions of two anonymous reviewers that enriched this manuscript with their suggestions. We would also like to thank PhD Gabriela Romano for her suggestions. Funded by Consejo Nacional de Investigaciones Científicas y Tecnológicas and Agencia Nacional para la Promoción de la Ciencia y la Tecnología. M. T. was supported by CONICET Graduate Fellowship. Centro Nacional Patagónico (CENPAT-CONICET) provided support for the optic service. Ea. Río Bote, Ea. La Martina, Ea. San Ramón, Ea. La Marina, Los Plateados provided logistic support. This research project was conducted under the animal care regulations of CONICET.

Supplementary material

10750_2016_2850_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)
10750_2016_2850_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)


  1. Acreman, M. C. & M. J. Dunbar, 2004. Defining environmental river flow requirements – a review. Hydrology and Earth System Sciences 8: 861–876.CrossRefGoogle Scholar
  2. Akaike, H., 1974. Stochastic theory of minimal realization. IEEE Transactions on Automatic Control 19: 716–723.CrossRefGoogle Scholar
  3. APHA, 1994. Standard methods for the examination of water and wastewater. American Public Health Association, Hanover.Google Scholar
  4. Barton, K., 2013. MuMIn: Multi-model Inference.
  5. Bredenhand, E. & M. J. Samways, 2009. Impact of a dam on benthic macroinvertebrates in a small river in a biodiversity hotspot: cape Floristic Region, South Africa. Journal of Insect Conservation 1: 297–307.CrossRefGoogle Scholar
  6. Brown, L. E., D. M. Hannah, A. M. Milner, C. Soulsby, A. Hodson & M. J. Brewer, 2006. Water source dynamics in an alpine glacierized river basin (Taillon-Gabiétous, French Pyrénées). Water Resources Research 42: W08404.Google Scholar
  7. Brunet, F., D. Gaiero, J. L. Probst, P. J. Depetris, F. Gauthier Lafaye & P. Stille, 2005. δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrological Processes 19: 3321–3344.CrossRefGoogle Scholar
  8. Castella, E., H. Adalsteinsson, J. E. Brittain, G. M. Gislason, A. Lehmann, V. Lencioni, B. Lods-Crozet, B. Maiolini, A. Milner, J. S. Olafsson, S. J. Saltveit & D. L. Snook, 2001. Macrobenthic invertebrate richness and composition along a latitudinal gradient of European glacier-fed streams. Freshwater Biology 46: 1811–1831.CrossRefGoogle Scholar
  9. Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. Sala, S. E. Hobbie, M. C. Mack & S. Díaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.CrossRefPubMedGoogle Scholar
  10. De Ruiter, P. C., A. Neutel & J. C. Moore, 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269: 1257–1260.CrossRefPubMedGoogle Scholar
  11. Depetris, P. J., D. M. Gaiero, P. L. Probst, J. Hartmann & S. Kempe, 2005. Biogeochemical output and typology of rivers training Patagonia’s Atlantic seaboard. Journal of Coastal Research 21: 835–844.CrossRefGoogle Scholar
  12. Domínguez, E. & H. R. Fernández (eds), 2009. Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán.Google Scholar
  13. Doyle, M., E. H. Stanley & J. M. Harbor, 2003. Channel adjustments following two dam removals in Wisconsin. Water Resources Research 39: 15 pp.Google Scholar
  14. EC, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy (Water Framework Directive). L327. European Commission, Brussels: 1–72.Google Scholar
  15. EC, 2009. Common implementation strategy for the Water Framework Directive. Guidance document No. 24: River Basin Management in a Changing Climate. Commission of the European Communities, Brussels.
  16. Gislason, J. C., 1985. Aquatic insect abundance in a regulated stream under fluctuating and stable diel flow patterns. North American Journal of Fisheries Management 5: 39–46.CrossRefGoogle Scholar
  17. Gíslason, G. M., H. Adalsteinsson, I. Hansen & J. S. Ólafsson, 2001. Longitudinal changes in macroinvertebrate assemblages along a glacial river system in central Iceland. Freshwater Biology 45: 1737–1751.CrossRefGoogle Scholar
  18. Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology. An Introduction for Ecologists. Wiley, Sussex.Google Scholar
  19. Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.CrossRefGoogle Scholar
  20. Gurnell, A. M. & C. R. Fenn, 1987. Proglacial Channel Processes. In Gurnell, A. M. & M. J. Clark (eds), Glaciofluvial Sediment Transfer: An Alpine Perspective. Wiley, Chichester: 423–472.Google Scholar
  21. Gup, T., 1994. Dammed from here to eternity: dams and biological integrity. Trout 35: 14–20.Google Scholar
  22. Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effect of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.CrossRefGoogle Scholar
  23. Hastie, T. & R. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.Google Scholar
  24. Haxton, T. J. & C. S. Findlay, 2008. Meta-analysis of the impacts of water management on aquatic communities. Canadian Journal of Fisheries and Aquatic Sciences 65: 437–447.CrossRefGoogle Scholar
  25. Herbert, M. E. & F. P. Gelwick, 2003. Spatial variation of head- water fish assemblages explained by hydrologic variability and upstream effects of impoundment. Copeia 2003: 273–284.CrossRefGoogle Scholar
  26. Jakob, C., C. T. Robinson & U. Uehlinger, 2003. Longitudinal effects of experimental floods on stream benthos downstream from a large dam. Aquatic Sciences 65: 223–231.CrossRefGoogle Scholar
  27. Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134–141.CrossRefGoogle Scholar
  28. Khamis, K., D. M. Hannah, M. H. Calvis, L. E. Brown, E. Castella & A. M. Milner, 2014. Alpine aquatic ecosystem conservation policy in a changing climate. Environmental Science & Policy 43: 39–55.CrossRefGoogle Scholar
  29. Kinsolving, A. D. & M. B. Bain, 1993. Fish assemblage recovery along a riverine disturbance gradient. Ecological Applications 3: 531–544.CrossRefPubMedGoogle Scholar
  30. Legendre, P. & E. D. Gallagher, 2001. Ecological meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  31. Léger, P. & M. Leclerc, 2007. Hydrostatic, temperature, time-displacement model for concrete dams. Journal of Engineering Mechanics 133: 267–277.CrossRefGoogle Scholar
  32. Ligon, F. K., W. E. Dietrich & W. J. Trush, 1995. Downstream ecological effects of dams. BioScience 45: 183–192.CrossRefGoogle Scholar
  33. Lopretto, E. C. & G. Tell, 1995. Ecosistemas de aguas continentales. Metodologias para su estudio. Ed. Sur, Argentina.Google Scholar
  34. Malmqvist, B. & M. Mäki, 1996. Benthic macroinvertebrate assemblages in north Swedish streams: environmental relationships. Ecography 17: 9–16.CrossRefGoogle Scholar
  35. Martínez, A., A. Larrañaga, A. Basaguren, J. Pérez, C. Mendoza-Lera & J. Pozo, 2013. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711: 31–42.CrossRefGoogle Scholar
  36. Mc Mullen, L. E. & D. A. Lytle, 2012. Quantifying invertebrate resistance to floods: a global-scale meta-analysis. Ecological Applications 22: 2164–2175.CrossRefGoogle Scholar
  37. Merritt, R. W. & K. W. Cummins (eds), 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt, Dubuque.Google Scholar
  38. Milner, A. M. & G. E. Petts, 1994. Glacial rivers: physical habitat and ecology. Freshwater Biology 32: 295–307.CrossRefGoogle Scholar
  39. Milner, A. M., J. E. Brittain, E. Castella & G. E. Petts, 2001. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biology 46: 1833–1847.CrossRefGoogle Scholar
  40. Milner, A. M., L. E. Brown & D. M. Hannah, 2009. Hydroecological response of river systems to shrinking glaciers. Hydrological Processes 23: 62–77.CrossRefGoogle Scholar
  41. Ministerio de Planificación, 2015.Secretaria de Energía:
  42. Miserendino, M. L., 2001. Macroinvertebrates assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia 444: 147–158.CrossRefGoogle Scholar
  43. Miserendino, M. L. & L. A. Pizzolon, 2003. Distribution of macroinvertebrates assemblages in the Azul-Quemquemtreu river basin, Patagonia, Argentina. New Zealand Journal of Marine and Freshwater Research 37: 525–539.CrossRefGoogle Scholar
  44. Pascual, M. A., V. Cussac, B. Dyer, D. Soto, P. Vigliano, S. Ortubay & P. Macchi, 2007. Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquatic Ecosystem Health & Management 10: 212–227.CrossRefGoogle Scholar
  45. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. BioScience 47: 769–784.CrossRefGoogle Scholar
  46. Poff, N. L., C. M. Brown, T. E. Grantham, J. H. Matthews, M. A. Palmer, C. M. Spence, R. L. Wilby, M. Haasnoot, G. Mendoza, K. C. Dominique & A. Baeza, 2015. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nature 6(1): 1–10.Google Scholar
  47. Power, M. E., W. E. Dietrich & J. C. Finlay, 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management 20: 887–895.CrossRefPubMedGoogle Scholar
  48. Pozo, J., E. Orive, H. Fraile & A. Basaguren, 1997. Effects of the Cernadilla–Valparaiso reservoir system on the River Tera. Regulated Rivers: Research and Management 13: 57–73.CrossRefGoogle Scholar
  49. Quiroga, A. P., J. L. Lancelotti, C. M. Riva-Rossi, M. Tagliaferro, M. Garcia Asorey & M. Pascual, 2015. Dams versus habitat: predicting the effects of dams on habitat supply and juvenile rainbow trout along the Santa Cruz River, Patagonia. Hydrobiologia 755: 57–72.CrossRefGoogle Scholar
  50. R Development Core Team, 2012. R: A language and environment for statistical computing. R. Foundation for statistical Computing, Vienna. Retrieved from
  51. Ramírez, A. & P. E. Gutiérrez-fonseca, 2014. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical 62: 155–167.CrossRefPubMedGoogle Scholar
  52. Röthlisberger, H. & H. Lang, 1987. Glacial hydrology. In Gurnell, A. M. & M. J. Clark (eds), Glacio-fluvial sediment transfer. Wiley, Chichester: 207–284.Google Scholar
  53. Salinas, L., 2014. Represas en Santa Cruz: confirman que la construcción arranca en enero – Dams in Santa Cruz: confirmation that construction starts in January.
  54. Sandin, L., 2009. The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macro invertebrate communities in a south-Swedish catchment. Fundamental and Applied Limnology 174: 75–87.CrossRefGoogle Scholar
  55. Smith, H., P. J. Wood & J. Gunn, 2003. The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems. Hydrobiologia 510: 53–66.CrossRefGoogle Scholar
  56. Sparks, R. E., 1995. Need for ecosystem management of large rivers and their floodplains. BioScience 45: 168–182.CrossRefGoogle Scholar
  57. SRH, 2013. Subsecretaría de Recursos Hídricos de la Nación.
  58. Tagliaferro, M., 2014. Estructura espacial, temporal y trófica de las comunidades acuáticas del río Santa Cruz. (Spatial, temporal, trophic structure of the aquatic communities of the Santa Cruz River). PhD Thesis – Universidad de Buenos Aires-Facultad de Ciencias Exactas y Naturales: 195 pp.Google Scholar
  59. Tagliaferro, M., M. L. Miserendino, A. L. Liberoff, P. Quiroga & M. A. Pascual, 2013. Dams in the last large free-flowing rivers of Patagonia, the Santa Cruz River, environmental features, and macroinvertebrate community. Limnologica 4: 500–509.CrossRefGoogle Scholar
  60. Tagliaferro, M., A. Quiroga & M. Pascual, 2014. Spatial pattern and habitat requirements of Galaxias maculatus in the last Un-interrupted large river of Patagonia: a baseline for management. Environment and Natural Resources Research 4: 54–64.CrossRefGoogle Scholar
  61. Tagliaferro, M., I. Arismendi, J. Lancelotti & M. Pascual, 2015. A natural experiment of dietary overlap between introduced Rainbow Trout (Oncorhynchus mykiss) and native Puyen (Galaxias maculatus) in the Santa Cruz River, Patagonia. Environmental Biology of Fishes 98: 1311–1325.CrossRefGoogle Scholar
  62. TerBraak, C. J. F. & P. Smilauer, 1999. CANOCO for Windows (Version 4.02). A FORTRAN Program for Canonical Community Ordination – Centre for biometry Wageningen, Wageningen.Google Scholar
  63. Townsend, C. R., A. G. Hildrew & K. Schofield, 1987. Persistence of stream communities in relation to environmental variability. Journal of Animal Ecology 56: 597–613.CrossRefGoogle Scholar
  64. Ward, J. V. & J. A. Stanford (eds), 1979. The Ecology of Regulated Streams. Plenum, New York.Google Scholar
  65. Ward, J. V. & J. A. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97–117.CrossRefGoogle Scholar
  66. Wolman, M. G., 1954. A method of sampling coarse river-bed material. EOS Transactions American Geophysical Union 5: 951–956.CrossRefGoogle Scholar
  67. Wood, S. N., 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 99: 673–686.CrossRefGoogle Scholar
  68. Zhong, Y. & G. Power, 1996. Environmental impacts of hydroelectric projects on fish resources in China. Regulated Rivers: Research & Management 12: 81–98.CrossRefGoogle Scholar
  69. Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Ecología y Desarrollo Sustentable (INEDES) (UNLU-CONICET)LujánArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Tecnológicas - CONICETBuenos AiresArgentina
  3. 3.Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CENPAT-CONICET)Puerto MadrynArgentina

Personalised recommendations