Skip to main content

Regional and local determinants of macrophyte community compositions in high-latitude lakes of Finland

Abstract

Species distributions are structured by regional and local determinants, which operate at multiple spatial and temporal scales. The purpose of our work was to distinguish the relative roles of local variables, climate, geographical location and post glaciation condition (i.e., delineation between supra- and subaquatic lakes during the post-glacial Ancylus Lake) in explaining variation in macrophyte community composition of all taxa, helophytes and hydrophytes. In addition, we investigated how these four explanatory variable groups affected macrophyte strategy groups based on Grime’s classification. Using partial linear regression and variation partitioning, we found that macrophyte communities are primarily filtered by local determinants together with regional characteristics at the studied spatial scale. We further evidenced that post glaciation condition indirectly influenced on local water quality variables, which in turn directly contributed to the macrophyte communities. We thus suggest that regional determinants interact with local-scale abiotic factors in explaining macrophyte community patterns and examining only regional or local factors is not sufficient for understanding how aquatic macrophyte communities are structured locally and regionally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alahuhta, J., K.-M. Vuori & M. Luoto, 2011. Land use, geomorphology and climate as environmental determinants of emergent aquatic macrophytes in boreal catchments. Boreal Environment Research 16: 185–202.

    Google Scholar 

  • Alahuhta, J., A. Kanninen & K.-M. Vuori, 2012. Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquatic Botany 103: 106–114.

    Article  Google Scholar 

  • Alahuhta, J. & J. Heino, 2013. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. Journal of Biogeography 40: 1572–1582.

    Article  Google Scholar 

  • Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala & H. Hämäläinen, 2013. Environmental and spatial correlates of community composition, richness and status of boreal lake macrophytes. Ecological Indicators 32: 172–181.

    CAS  Article  Google Scholar 

  • Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala & H. Hämäläinen, 2014. Variable response of functional macrophyte groups to lake characteristics, land use and space: implications for bioassessment. Hydrobiologia 737: 201–214.

    CAS  Article  Google Scholar 

  • Alahuhta, J., 2015. Geographic patterns of lake macrophyte communities and species richness at regional scale. Journal of Vegetation Science 26: 564–575.

    Article  Google Scholar 

  • Alahuhta, J., J. Rääpysjärvi, S. Hellsten, M. Kuoppala & J. Aroviita, 2015. Species sorting drives variation of boreal lake and river macrophyte communities. Community Ecology 16: 76–85.

    Article  Google Scholar 

  • Alahuhta, J., J. Halmetoja, H. Tukiainen & J. Hjort, 2016. Importance of spatial scale in structuring emergent lake vegetation across environmental gradients and scales: GIS-based approach. Ecological Indicators 60: 1164–1172.

    CAS  Article  Google Scholar 

  • Barrat-Segretain, M. H., 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio 123: 13–37.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecography 89: 2623–2632.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical ecology with R. Springer, NewYork, NY.

    Book  Google Scholar 

  • Borman, S. C., S. M. Galatowitsch & R. M. Newman, 2009. The effects of species immigrations and changing conditions on isoetid communities. Aquatic Botany 91: 143–150.

    Article  Google Scholar 

  • Capers, R. S., R. Selsky & G. J. Bugbee, 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.

    Article  Google Scholar 

  • Claussen, P., B. A. Nolet, A. D. Fox & M. Klaassen, 2002. Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe: a critical review of possibilities and limitations. Acta Oecologia 23: 191–203.

    Article  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Dieffenbacher-Krall, A. C. & G. L. Jacobson, 2001. Post-glacial changes in the geographic ranges of certain aquatic vascular plants in North America. Proceeding of the Royal Irish Academy B 101: 79–84.

    Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • Eronen, M., 2005. Land Uplift: Virgin Land from the Sea. In Seppälä, M. (ed.), The physical geography of Fennoscandia. Oxford University Press, Oxford: 17–34.

    Google Scholar 

  • Epskamp, S., 2015. semPlot: unified visualizations of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal. doi:10.1080/10705511.2014.937847.

    Google Scholar 

  • Grace, J. B., 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Grace, J. B., D. R. Schoolmaster Jr., G. R. Guntenspergen, A. M. Little, B. R. Mitchell, K. M. Miller & E. W. Schweiger, 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: 1–44.

    Article  Google Scholar 

  • Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalists 111: 1169–1194.

    Article  Google Scholar 

  • Grime, J. P., J. G. Hodgson & R. Hunt, 1988. Comparative plant ecology. A functional approach to common british species. Springer, Berlin.

    Google Scholar 

  • Heino, J. & H. Toivonen, 2008. Aquatic plant biodiversity at high latitudes: patterns of richness and rarity in Finnish freshwater macrophytes. Boreal Environment Research 13: 1–14.

    Google Scholar 

  • Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen & R. Virtanen, 2015. A comparative analysis of metacommunity types in the freshwater realm. Ecology and Evolution 5: 1525–1537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heino, J. & J. Alahuhta, 2015. Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. Journal of Animal Ecology 84: 427–441.

    Article  PubMed  Google Scholar 

  • Hellsten, S., 2001. Effects of lake water level regulation on aquatic macrophyte stands in northern Finland and options to predict these impacts under varying conditions. Acta Botanica Fennica 171: 1–47.

    Google Scholar 

  • Jalas, J., 1958. Suuri Kasvikirja I. Otava, Keuruu.

    Google Scholar 

  • Jalas, J., 1965. Suuri Kasvikirja II. Otava, Keuruu.

    Google Scholar 

  • Jalas, J., 1980. Suuri Kasvikirja III. Otava, Keuruu.

    Google Scholar 

  • Kanninen, A., V.-M. Vallinkoski, L. Leka, T. J. Marjomäki, S. Hellsten & H. Hämäläinen, 2013a. A comparison of two methods for surveying aquatic macrophyte communities in boreal lakes: implications for bioassessment. Aquatic Botany 104: 88–103.

    Article  Google Scholar 

  • Kanninen, A., S. Hellsten & H. Hämäläinen, 2013b. Comparing stressor-specific indices and general measures of taxonomic composition for assessing the status of boreal lacustrine macrophyte communities. Ecological Indicators 27: 29–43.

    Article  Google Scholar 

  • Koch, P. L. & A. D. Barnosky, 2006. Late quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution and Systematics 37: 215–250.

    Article  Google Scholar 

  • Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89–136.

    Article  Google Scholar 

  • Lampinen, R., T. Lahti & M. Heikkinen, 2015. Plant Atlas of Finland 2014. University of Helsinki, The Finnish Museum of Natural History, Botanical Museum, Helsinki.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Lind, L., C. Nilsson, L. E. Polvi & C. Weber, 2014. The role of ice dynamics in shaping vegetation in flowing waters. Biological Reviews 89: 791–804.

    Article  PubMed  Google Scholar 

  • Madsen, T. V., S. C. Maberly & G. Bowes, 1996. Photosynthetic acclimation of submersed angiosperms to CO2 and HCO3 . Aquatic Botany 53: 15–30.

    Article  Google Scholar 

  • McCann, M. J., 2015. Local and regional determinants of an uncommon functional group in freshwater lakes and ponds. PLoS One 10: e0131980.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGill, B. J., 2010. Matters of scale. Science 328: 575–576.

    CAS  Article  PubMed  Google Scholar 

  • Murphy, K. J., B. Rørslett & I. Springuel, 1990. Strategy analysis of submerged lake macrophyte communities: an international example. Aquatic Botany 36: 303–323.

    Article  Google Scholar 

  • Ojala, A. E. K., J.-P. Palmu, A. Åberg, S. Åberg & H. Virkki, 2013. Development of an ancient shoreline database to reconstruct the Littorina Sea maximum extension and the highest shoreline of the Baltic Sea basin in Finland. Bulletin of the Geological Society of Finland 85: 126–144.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2012. Vegan: community ecology package. R package version 2.0-3 [available at: http://CRAN.R-project.org/package=vegan].

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Pirinen, P., H. Simola, J. Aalto, J. P. Kaukoranta, P. Karlsson & R. Ruuhela, 2012. Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute Reports 25, Helsinki.

  • Ricklefs, R. E., 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1–15.

    Article  Google Scholar 

  • Rosseel, Y., 2012. lavaan: an R package for structural equation modeling. Journal of Statistical Software 48: 1–36.

    Article  Google Scholar 

  • Rørslett, B., 1989. An integrated approach to hydropower impact assessment. II. Submerged macrophytes in some Norwegian hydro-electric lakes. Hydrobiologia 175: 65–82.

    Article  Google Scholar 

  • Rørslett, B., 1991. Principal determinants of aquatic macrophyte species richness in northern European lakes. Aquatic Botany 39: 173–193.

    Article  Google Scholar 

  • Saarnel, J. M., B. Beltman, A. Buijze, R. Groen & M. B. Soons, 2014. The role of wind in the dispersal of floating seeds in slow-flowing or stagnant water bodies. Journal of Vegetation Science 25: 262–274.

    Article  Google Scholar 

  • Sawada, M., A. E. Viau & K. Gajewski, 2003. The biogeography of aquatic macrophytes in North America since the last glacial maximum. Journal of Biogeography 30: 999–1017.

    Article  Google Scholar 

  • Soininen, J., 2014. A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95: 3284–3292.

    Article  Google Scholar 

  • Soons, M. B., A.-L. Brochet, R. Kleyheeg & A. J. Green, 2015. Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. Journal of Ecology 104: 443–455.

    Article  Google Scholar 

  • Svenning, J.-C., 2003. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters 6: 646–653.

    Article  Google Scholar 

  • Svenning, J.-C. & F. Skov, 2003. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecology Letters 10: 453–460.

    Article  Google Scholar 

  • Svenning, J.-C., M. C. Fitzpatrick, S. Normand, C. H. Graham, P. B. Pearman, L. R. Iverson & F. Skov, 2010. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography 33: 1070–1080.

    Article  Google Scholar 

  • Tikkanen, M. & J. Oksanen, 2002. Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia 180(1–2): 9–20.

    Google Scholar 

  • Toivonen, H. & P. Huttunen, 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Botany 51: 197–221.

    Article  Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.

    Article  Google Scholar 

  • Viana, D. S., L. Santamaría, K. Schwenk, M. Manca, A. Hobæk, M. Mjelde, C. D. Preston, R. J. Gornall, J. M. Croft, R. A. King, A. J. Green & J. Figuerola, 2014. Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshwater Biology 59: 2096–2106.

    Article  Google Scholar 

  • Väliranta, M., 2006. Long-term changes in aquatic plant species composition in North-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquatic Botany 85: 224–232.

    Article  Google Scholar 

  • Välinranta, M., J. Weckström, S. Siitonen, H. Seppä, J. Alkio, S. Juutinen & E.-S. Tuittila, 2011. Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology 45: 339–352.

    Article  Google Scholar 

  • Whittaker, R. J., K. J. Willis & R. Field, 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453–470.

    Article  Google Scholar 

  • Willis, K. J. & R. J. Whittaker, 2002. Species diversity: scale matters. Science 295: 1245–1248.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are highly thankful for two reviewers for their fair and constructive comments, which clearly improved our work. We also thank Joseph Bailey for helping with the structural equation modelling. The project was partly supported by Biological Monitoring of Finnish Freshwaters under the diffuse loading project (XPR3304) financed by the Ministry of Agriculture and Forestry and partly by the national surveillance monitoring programmes of lakes. We thank the numerous field teams who participated in the field work. Seppo Hellsten was supported by the EU-funded MARS project (7th EU Framework Programme, Theme 6., Contract No.: 603378). Language of the manuscript was checked by Aaron Bergdahl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Alahuhta.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17811 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alahuhta, J., Hellsten, S., Kuoppala, M. et al. Regional and local determinants of macrophyte community compositions in high-latitude lakes of Finland. Hydrobiologia 812, 99–114 (2018). https://doi.org/10.1007/s10750-016-2843-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2843-2

Keywords

  • Ancylus Lake
  • Aquatic plants
  • Finland
  • Glaciation
  • Grime’s plant strategy
  • Macrophytes
  • Species traits
  • Supra-aquatic lakes