Hydrobiologia

, Volume 791, Issue 1, pp 21–34 | Cite as

Lake level fluctuations and divergence of cichlid fish ecomorphs in Lake Tanganyika

ADVANCES IN CICHLID RESEARCH II

Abstract

Lake Tanganyika has undergone substantial climate-driven lake level fluctuations that have repeatedly changed the distribution and extent of habitat for endemic fishes. Here we consider whether patterns of population genetic structure and phenotypic divergence within the cichlid fish Telmatochromis temporalis have been affected by changing lake levels. The species has a large-bodied rock-living ecomorph and a small-bodied shell-living ecomorph, and both are found in close proximity in littoral habitats. Using mtDNA sequences we found that geographically distant (>50 km) populations within the southern lake region diverged approximately 130,000–230,000 years ago, suggesting that the regional genetic structure persisted through a low stand of over 400 m ~106,000 years ago that ended with a rise to present levels ~100,000 years ago. We also found signatures of large population expansions since this rise across the study region, suggesting that the populations positively responded to new habitat as lake levels rose to present levels. Finally, we found that geographically adjacent (<10 km) ecomorphs exhibit both significant genetic differentiation and signatures of gene flow after the lake level rise. The results suggest that local ecomorph divergence progressed with gene flow after the last major rise in lake level ~100,000, potentially facilitated by new ecological opportunities.

Keywords

Ecological speciation Parallel evolution Population genetics Demographic history 

Notes

Acknowledgments

We thank H. Phiri, D. Sinyinza, J.K. Zima, L. Makasa, R. Shapola and staff at the Lake Tanganyika Research Unit, Mpulungu of the Ministry of Livestock and Fisheries, Republic of Zambia for their field support. We thank H.H. Büscher for help in the field and W. Salzburger for arranging research permits. For comments on the manuscript, we thank S. Hiscock, S. Koblmüller and W. Salzburger. Work was funded by a Natural History Museum Ph.D studentship and the BBSRC Collaborative Scheme for Systematics Research (CoSyst) initiative.

Supplementary material

10750_2016_2839_MOESM1_ESM.docx (851 kb)
Supplementary material 1 (DOCX 851 kb)

References

  1. Beerli, P. & J. Felsenstein, 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences of the USA 98: 4563–4568.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cohen, A. S., M. R. Talbot, S. M. Awramik, D. L. Dettman & P. Abell, 1997. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society of America Bulletin 109: 444–460.CrossRefGoogle Scholar
  3. Danley, P. D., M. Husemann, B. Ding, L. M. Dipietro, E. J. Beverly & D. J. Peppe, 2012. The impact of the geologic history and paleoclimate on the diversification of East African cichlids. International Journal of Evolutionary Biology 2012: Article ID 574851.Google Scholar
  4. Drummond, A. J., A. Rambaut, B. Shapiro & O. G. Pybus, 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22: 1185–1192.CrossRefPubMedGoogle Scholar
  5. Duftner, N., K. M. Sefc, S. Koblmüller, B. Nevado, E. Verheyen, H. Phiri & C. Sturmbauer, 2006. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Molecular Ecology 15: 2381–2395.CrossRefPubMedGoogle Scholar
  6. Edelaar, P., A. M. Siepielski & J. Clobert, 2008. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62: 2462–2472.CrossRefPubMedGoogle Scholar
  7. Edelaar, P., D. Alonso, S. Lagerveld, J. C. Senar & M. Björklund, 2012. Population differentiation and restricted gene flow in Spanish crossbills: not isolation-by-distance but isolation-by-ecology. Journal of Evolutionary Biology 25: 417–430.CrossRefPubMedGoogle Scholar
  8. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.CrossRefPubMedGoogle Scholar
  9. Funk, D. J., P. Nosil & W. J. Etges, 2006. Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America 103: 3209–3213.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Geffen, E., M. J. Anderson & R. K. Wayne, 2004. Climate and habitat barriers to dispersal in the highly mobile grey wolf. Molecular Ecology 13: 2481–2890.CrossRefPubMedGoogle Scholar
  11. Genner, M. J. & G. F. Turner, 2014. Timing of population expansions within the Lake Malawi haplochromine cichlid fish radiation. Hydrobiologia 748: 121–132.CrossRefGoogle Scholar
  12. Genner, M. J., M. E. Knight, M. P. Haesler & G. F. Turner, 2010. Establishment and expansion of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Molecular Ecology 19: 170–182.CrossRefPubMedGoogle Scholar
  13. Gerrard, D. T. & A. Meyer, 2007. Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Molecular Biology and Evolution 24: 2286–2297.CrossRefPubMedGoogle Scholar
  14. Harmon, L., J. Melville, A. Larson & J. Losos, 2008. The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Systematic Biology 57: 562–573.CrossRefPubMedGoogle Scholar
  15. Heled, J. & A. J. Drummond, 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580.CrossRefPubMedGoogle Scholar
  16. Hellmann, J. K., C. M. O’Connor, I. Y. Ligocki, T. M. Farmer, T. J. Arnold, A. R. Reddon, K. A. Garvy, S. E. Marsh-Rollo, S. Balshine & I. M. Hamilton, 2015. Evidence for alternative male morphs in a Tanganyikan cichlid fish. Journal of Zoology 296: 116–123.CrossRefGoogle Scholar
  17. Hughes, C. & R. Eastwood, 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the United States of America 103: 10334–10339.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Koblmüller, S., N. Duftner, K. M. Sefc, U. Aigner, M. Rogetzer & C. Sturmbauer, 2009. Phylogeographic structure and gene flow in the scale-eating cichlid Perissodus microlepis (Teleostei, Perciformes, Cichlidae) in southern Lake Tanganyika. Zoologica Scripta 38: 257–268.CrossRefGoogle Scholar
  19. Koblmüller, S., W. Salzburger, B. Obermüller, E. Eigner, C. Sturmbauer & K. M. Sefc, 2011. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Molecular Ecology 20: 2272–2290.CrossRefPubMedGoogle Scholar
  20. Konings, A., 1998. Tanganyika cichlids in their natural habitat. Cichlid Press, Germany, St. Leon-Rot, Germany.Google Scholar
  21. Konings, A., 2007. Malawi cichlids in their natural habitat, 4th ed. Cichlid Press, El Paso, TX.Google Scholar
  22. Legendre, P. & M.-J. Fortin, 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources 10: 831–844.CrossRefPubMedGoogle Scholar
  23. Mahler, D. L., L. J. Revell, R. E. Glor & J. B. Losos, 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64: 2731–2745.CrossRefPubMedGoogle Scholar
  24. Malinsky, M., R. Challis, A. Tyers, S. Schiffels, Y. Terai, B. Ngatunga, E. Miska, R. Durbin, M. J. Genner & G. F. Turner, 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350: 1493–1498.CrossRefPubMedPubMedCentralGoogle Scholar
  25. McGlue, M. M., K. E. Lezzar, A. S. Cohen, J. M. Russell, J.-J. Tiercelin, A. A. Felton, E. Mbede & H. H. Nkotagu, 2008. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. Journal of Paleolimnology 40: 635–653.CrossRefGoogle Scholar
  26. McGlue, M. M., M. J. Soreghan, E. Michel, J. A. Todd, A. S. Cohen, J. Mischler, C. S. O’Connell, O. S. Castaneda, R. J. Hartwell, K. E. Lezzar & H. H. Nkotagu, 2010. Environmental controls of shell-rich facies in tropical lacustrine rifts: a view from Lake Tanganyika’s littoral. Palaios 25: 426–438.CrossRefGoogle Scholar
  27. Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology 22: 2362–2368.CrossRefPubMedGoogle Scholar
  28. Nevado, B., S. Mautner, C. Sturmbauer & E. Verheyen, 2013. Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species. Molecular Ecology 22: 3933–3948.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan
  30. Phillimore, A. B. & T. D. Price, 2008. Density-dependent cladogenesis in birds. PLoS Biology 6: e71.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Price, T. D., D. M. Hooper, C. D. Buchanan, U. S. Johansson, D. T. Tietze, P. Alstrom, U. Olsson, M. Ghosh-Harihar, F. Ishtiaq, S. K. Gupta, J. Martens, B. Harr, P. Singh & D. Mohan, 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509: 222–225.CrossRefPubMedGoogle Scholar
  32. Rainey, P. B. & M. Travisano, 1998. Adaptive radiation in a heterogeneous environment. Nature 394: 69–72.CrossRefPubMedGoogle Scholar
  33. Rossiter, A., 1995. The cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. Advances in Ecological Research 26: 187–252.CrossRefGoogle Scholar
  34. Rozas, J., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.CrossRefPubMedGoogle Scholar
  35. Rüber, L. & D. C. Adams, 2001. Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika. Journal of Evolutionary Biology 14: 325–332.CrossRefGoogle Scholar
  36. Rüber, L., E. Verheyen & A. Meyer, 1999. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences of the USA 96: 10230–10235.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rüber, L., A. Meyer, C. Sturmbauer & E. Verheyen, 2001. Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Molecular Ecology 10: 1207–1225.CrossRefPubMedGoogle Scholar
  38. Rüber, L., J. L. Van Tassell & R. Zardoya, 2003. Rapid speciation and ecological divergence in the American seven-spined gobies (Gobiidae, Gobiosomatini) inferred from a molecular phylogeny. Evolution 57: 1584–1598.CrossRefPubMedGoogle Scholar
  39. Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Molecular Ecology 18: 169–185.CrossRefPubMedGoogle Scholar
  40. Salzburger, W., T. Mack, E. Verheyen & A. Meyer, 2005. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology 5: 17.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schelly, R., W. Salzburger, S. Koblmüller, N. Duftner & C. Sturmbauer, 2006. Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. Molecular Phylogenetics and Evolution 38: 426–438.CrossRefPubMedGoogle Scholar
  42. Scholz, C. A., J. W. King, G. S. Ellis, P. K. Swart, J. C. Stager & S. M. Colman, 2003. Paleolimnology of Lake Tanganyika, East Africa, over the past 100 kyr. Journal of Paleolimnology 30: 139–150.CrossRefGoogle Scholar
  43. Schultheiss, R., B. Van Bocxlaer, T. Wilke & C. Albrecht, 2009. Old fossils–young species: evolutionary history of an endemic gastropod assemblage in Lake Malawi. Proceedings of the Royal Society B: Biological Sciences 276: 2837–2846.CrossRefGoogle Scholar
  44. Seehausen, O., 2006. Conservation: losing biodiversity by reverse speciation. Current Biology 16: R334–R337.CrossRefPubMedGoogle Scholar
  45. Sefc, K. M., 2011. Mating and parental care in Lake Tanganyika’s cichlids. International Journal of Evolutionary Biology 2011: 1–20.CrossRefGoogle Scholar
  46. Sefc, K. M., S. Baric, W. Salzburger & C. Sturmbauer, 2007. Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika, East Africa. Journal of Molecular Evolution 64: 33–49.CrossRefPubMedGoogle Scholar
  47. Sexton, J. P., S. B. Hangartner & A. A. Hoffmann, 2014. Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution 68: 1–15.CrossRefPubMedGoogle Scholar
  48. Shafer, A. B. A. & J. B. W. Wolf, 2013. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecology Letters 16: 940–950.CrossRefPubMedGoogle Scholar
  49. Siwertsson, A., R. Knudsen, K. Kahilainen, K. Praebel, R. Primicerio & P. A. Amundsen, 2010. Sympatric diversification as influenced by ecological opportunity and historical contingency in a young species lineage of whitefish. Evolutionary Ecology Research 12: 929–947.Google Scholar
  50. Sturmbauer, C., S. Baric, W. Salzburger, L. Rüber & E. Verheyen, 2001. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution 18: 144–154.CrossRefPubMedGoogle Scholar
  51. Sugawara, T., Y. Terai & N. Okada, 2002. Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes cichlid fishes. Molecular Biology and Evolution 19: 1807–1811.CrossRefPubMedGoogle Scholar
  52. Takahashi, T., 2004. Morphological and genetic distinctness of rock and shell-bed dwelling Telmatochromis (Teleostei, Cichlidae) in the south of Lake Tanganyika suggest the existence of two species. Journal of Fish Biology 65: 419–435.CrossRefGoogle Scholar
  53. Takahashi, T., K. Ota, K. Kohda & M. Hori, 2012. Some evidence for different ecological pressures that constrain male and female body size. Hydrobiologia 684: 35–44.CrossRefGoogle Scholar
  54. Takahashi, T., K. Watanabe, H. Munehara, L. Rüber & M. Hori, 2009. Evidence for divergent natural selection of a Lake Tanganyika cichlid inferred from repeated radiations in body size. Molecular Ecology 18: 3110–3119.CrossRefPubMedGoogle Scholar
  55. Taylor, E. B., J. W. Boughman, M. Groenenboom, D. Sniatynski, D. Schluter & J. L. Gow, 2006. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology 15: 343–355.CrossRefPubMedGoogle Scholar
  56. Taylor, M., L. Rüber & E. Verheyen, 2001. Microsatellites reveal high levels of population substructuring in the species-poor eretmodine cichlid lineage from Lake Tanganyika. Proceedings of the Royal Society B: Biological Sciences 268: 803–808.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Teotonio, H., I. M. Chelo, M. Bradic, M. R. Rose & A. D. Long, 2009. Experimental evolution reveals natural selection on standing genetic variation. Nature Genetics 41: 251–257.CrossRefPubMedGoogle Scholar
  58. Tran, L. A. P. (2014.) The role of ecological opportunity in shaping disparate diversification trajectories in a bicontinental primate radiation. Proceedings of the Royal Society B: Biological Sciences 281: Article 20131979.Google Scholar
  59. Verheyen, E., L. Rüber, J. Snoeks & A. Meyer, 1996. Mitochondrial phylogeography of rock-dwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philosophical Transactions of the Royal Society B: Biological Sciences 351: 797–805.CrossRefGoogle Scholar
  60. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–369.CrossRefPubMedGoogle Scholar
  61. Webster, S. E., J. Galindo, J. W. Grahame & R. K. Butlin, 2012. Habitat choice and speciation. International Journal of Ecology 2012: 1–12.CrossRefGoogle Scholar
  62. Winkelmann, K., M. J. Genner, T. Takahashi & L. Rüber, 2014. Competition-driven speciation in cichlid fish. Nature Communications 5: Article 3412.Google Scholar
  63. Yoder, J. B., E. Clancey, S. Des Roches, J. M. Eastman, L. Gentry, W. Godsoe, T. J. Hagey, D. Jochimsen, B. P. Oswald, J. Robertson, B. A. Sarver, J. J. Schenk & S. F. Spear, 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23: 1581–1596.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kai Winkelmann
    • 1
    • 2
  • Lukas Rüber
    • 3
    • 4
  • Martin J. Genner
    • 2
  1. 1.Department of Life SciencesThe Natural History MuseumLondonUK
  2. 2.School of Biological SciencesBristolUK
  3. 3.Naturhistorisches Museum der Burgergemeinde BernBernSwitzerland
  4. 4.Institute of Ecology and EvolutionUniversity of BernBernSwitzerland

Personalised recommendations