Skip to main content
Log in

Effects of interspecific gene flow on the phenotypic variance–covariance matrix in Lake Victoria Cichlids

  • Advances in Cichlid Research II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may, however, rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance–covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast, we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance–covariance matrix, potentially increasing the adaptive potential of such populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott, R., D. Albach, S. Ansell, J. W. Arntzen, S. J. E. Baird, N. Bierne, J. W. Boughman, A. Brelsford, C. A. Buerkle, R. Buggs, R. K. Butlin, U. Dieckmann, F. Eroukhmanoff, A. Grill, S. H. Cahan, J. S. Hermansen, G. Hewitt, A. G. Hudson, C. Jiggins, J. Jones, B. Keller, T. Marczewski, J. Mallet, P. Martinez-Rodriguez, M. Möst, S. Mullen, R. Nichols, A. W. Nolte, C. Parisod, K. Pfennig, A. M. Rice, M. G. Ritchie, B. Seifert, C. M. Smadja, R. Stelkens, J. M. Szymura, R. Vainola, J. B. W. Wolf & D. Zinner, 2013. Hybridization and speciation. Journal of evolutionary Biology 26: 229–246.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, S. J. & P. C. Phillips, 1999. Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake. Thamnophis elegans. Evolution 53: 1516–1527.

    Google Scholar 

  • Arnold, S. J., R. Bürger, P. A. Hohenlohe, B. C. Ajie & A. G. Jones, 2008. Understanding the evolution and stability of the G-matrix. Evolution 62: 2451–2461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey, R. I., F. Eroukhmanoff & G.-P. Sætre, 2013. Hybridization and genome evolution II: mechanisms of species divergence and their effects on evolution in hybrids. Current Zoology 59: 675–685.

    Article  Google Scholar 

  • Barel, C. D. N., M. vanOijen, F. Witte & E. Wittemaas, 1977. An introduction to taxonomy and morphology of haplochromine cichlidae from Lake Victoria. Netherlands Journal of Zoology 27: 333–380.

    Article  Google Scholar 

  • Berner, D., 2009. Correction of a bootstrap approach to testing for evolution along lines of least resistance. Journal of Evolutionary Biology 22: 2563–2565.

    Article  CAS  PubMed  Google Scholar 

  • Blows, M. W., S. L. Allen, J. M. Collet, S. F. Chenoweth & K. McGuigan, 2015. The phenome-wide distribution of genetic variance. American Naturalist 186: 15–30.

    Article  PubMed  Google Scholar 

  • Calsbeek, B., S. Lavergne, M. Patel & J. Molofsky, 2011. Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass. Evolutionary Applications 4: 726–735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapuis, E., G. Martin & J. Goudet, 2008. Effects of selection and drift on G matrix evolution in a heterogeneous environment: a multivariate Qst-Fst Test with the freshwater snail Galba truncatula. Genetics 180: 2151–2161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheverud, J. M., 1988. A Comparison of genetic and phenotypic correlations. Evolution 42: 958–968.

    Article  Google Scholar 

  • Draghi, J. A. & M. C. Whitlock, 2012. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66: 2891–2902.

    Article  PubMed  Google Scholar 

  • Eroukhmanoff, F., 2009. Just how much is the G-matrix actually constraining adaptation? Evolutionary Biology 36: 323–326.

    Article  Google Scholar 

  • Eroukhmanoff, F. & E. I. Svensson, 2008. Phenotypic integration and conserved covariance structure in calopterygid damselflies. Journal of Evolutionary Biology 21: 514–526.

    Article  CAS  PubMed  Google Scholar 

  • Eroukhmanoff, F. & E. I. Svensson, 2011. Evolution and stability of the G-matrix during the colonization of a novel environment. Journal of Evolutionary Biology 24: 1363–1373.

    Article  CAS  PubMed  Google Scholar 

  • Falconer, D. S., 1989. Introduction to Quantitative Genetics. Wiley, New York.

    Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression. Sage Publications Inc., Thousand Oaks.

    Google Scholar 

  • Gilman, R. T. & J. E. Behm, 2011. Hybridization, species collapse, and species reemergence after disturbance to premating mechanisms of reproductive isolation. Evolution 65: 2592–2605.

    Article  PubMed  Google Scholar 

  • Grant, P. R. & B. R. Grant, 1994. Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution 48: 297–316.

    Article  Google Scholar 

  • Greg, S., 2015. Lake Victoria Shapefiles. figshare. https://dx.doi.org/10.6084/m9.figshare.1494839.v1

  • Guillaume, F. & M. C. Whitlock, 2007. Effects of migration on the genetic covariance matrix. Evolution 61: 2398–2409.

    Article  PubMed  Google Scholar 

  • Hine, E., S. F. Chenoweth, H. D. Rundle & M. W. Blows, 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 364: 1567–1578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, A. G., S. J. Arnold & R. Borger, 2003. Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution 57: 1747–1760.

    Article  PubMed  Google Scholar 

  • Kirkpatrick, M., 2009. Patterns of quantitative genetic variation in multiple dimensions. Genetica 136: 271–284.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., 2010. Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics 11: 623–635.

    CAS  PubMed  Google Scholar 

  • Lande, R., 1979. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 402–416.

    Article  Google Scholar 

  • Lande, R., 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology 22: 1435–1446.

    Article  PubMed  Google Scholar 

  • Lande, R. & S. J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Article  Google Scholar 

  • Lucek, K., A. Sivasundar, B. K. Kristjánsson, S. Skulason & O. Seehausen, 2014a. Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age. Journal of Evolutionary Biology 27: 1878–1892.

    Article  CAS  PubMed  Google Scholar 

  • Lucek, K., M. Lemoine & O. Seehausen, 2014b. Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. Journal of Evolutionary Biology 27: 2233–2248.

    Article  CAS  PubMed  Google Scholar 

  • Lucek, K., A. Sivasundar & O. Seehausen, 2014c. Disentangling the role of phenotypic plasticity and genetic divergence in contemporary ecotype formation during a biological invasion. Evolution 68: 2619–2632.

    Article  PubMed  Google Scholar 

  • Magalhaes, I. S., S. Mwaiko, M. V. Schneider & O. Seehausen, 2009. Divergent selection and phenotypic plasticity during incipient speciation in Lake Victoria cichlid fish. Journal of Evolutionary Biology 22: 260–274.

    Article  CAS  PubMed  Google Scholar 

  • Mallet, J., 2007. Hybrid speciation. Nature 446: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Meier, J. I., V. C. Sousa, D. A. Marques, O. M. Selz, C. E. Wagner, L. Excoffier, & O. Seehausen, 2016. Demographic modeling of whole genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. submitted.

  • Nolte, A. W., J. Freyhof, K. Stemshorn & D. Tautz, 2005. An invasive lineage of sculpins, Cottus sp (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proceedings of the Royal Society of London Series B, Biological Sciences 272: 2379–2387.

    Article  Google Scholar 

  • Orr, H. A., 2005. The genetic theory of adaptation: a brief history. Nature Reviews Genetics 6: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, K. J., Y. H. Son & R. C. Albertson, 2011. Hybridization promotes evolvability in african cichlids: connections between transgressive segregation and phenotypic integration. Evolutionary Biology 38: 306–315.

    Article  Google Scholar 

  • Reist, J. D., 1986. An empirical evaluation of coefficients used in residual and allometric adjustment of size covariation. Canadian Journal Of Zoology 64: 1363–1368.

    Article  Google Scholar 

  • Renaud, S., P. Alibert & J.-C. Auffray, 2012. Modularity as a source of new morphological variation in the mandible of hybrid mice. BMC Evolutionary Biology 12: 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieseberg, L. H., O. Raymond, D. M. Rosenthal, Z. Lai, K. Livingstone, T. Nakazato, J. L. Durphy, A. E. Schwarzbach, L. A. Donovan & C. Lexer, 2003. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301: 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  • Roseman, C. C., 2016. Random genetic drift, natural selection, and noise in human cranial evolution. American Journal of Physical Anthropology. doi:10.1002/ajpa.22918.

    PubMed  Google Scholar 

  • Rudman, S. M. & D. Schluter, 2016. Ecological impacts of reverse speciation in threespine stickleback. Current Biology 26: 490–495.

    Article  CAS  PubMed  Google Scholar 

  • Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.

    Article  Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society of London Series B, Biological Sciences 273: 1987–1998.

    Article  Google Scholar 

  • Seehausen, O. & N. Bouton, 1997. Microdistribution and fluctuations in niche overlap in a rocky shore cichlid community in Lake Victoria. Ecology of Freshwater Fish 6: 161–173.

    Article  Google Scholar 

  • Seehausen, O., J. vanAlphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811.

    Article  CAS  Google Scholar 

  • Seehausen, O., E. Lippitsch, N. Bouton & H. Zwennes, 1998. Mbipi, the rock-dwelling cichlids of Lake Victoria: description of three new genera and fifteen new species (Teleostei). Ichthyological Exploration of Freshwaters 9: 129–228.

    Google Scholar 

  • Seehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620–626.

    Article  CAS  PubMed  Google Scholar 

  • Seehausen, O., R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. A. Hohenlohe, C. L. Peichel, G.-P. Saetre, C. Bank, Å. Brännström, A. Brelsford, C. S. Clarkson, F. Eroukhmanoff, J. L. Feder, M. C. Fischer, A. D. Foote, P. Franchini, C. D. Jiggins, F. C. Jones, A. K. Lindholm, K. Lucek, M. E. Maan, D. A. Marques, S. H. Martin, B. Matthews, J. I. Meier, M. Möst, M. W. Nachman, E. Nonaka, D. J. Rennison, J. Schwarzer, E. T. Watson, A. M. Westram & A. Widmer, 2014. Genomics and the origin of species. Nature Reviews Genetics 15: 176–192.

    Article  CAS  PubMed  Google Scholar 

  • Selz, O. M., K. Lucek, K. A. Young & O. Seehausen, 2014. Relaxed trait covariance in interspecific cichlid hybrids predicts morphological diversity in adaptive radiations. Journal of Evolutionary Biology 27: 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Stelkens, R. B., M. A. Brockhurst, G. D. D. Hurst & D. Greig, 2014. Hybridization facilitates evolutionary rescue. Evolutionary Applications 7: 1209–1217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stelkens, R. & O. Seehausen, 2009. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63: 884–897.

    Article  PubMed  Google Scholar 

  • Steppan, S., P. C. Phillips & D. Houle, 2002. Comparative quantitative genetics: evolution of the G matrix. Trends in Ecology and Evolution 17: 320–327.

    Article  Google Scholar 

  • Taylor, E. B., J. W. Boughman, M. Groenenboom, M. Sniatynski, D. Schluter & J. L. Gow, 2006. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology 15: 343–355.

    Article  CAS  PubMed  Google Scholar 

  • Vonlanthen, P., D. Bittner, A. G. Hudson, K. A. Young, R. Müller, B. Lundsgaard-Hansen, D. Roy, S. Di Piazza, C. R. Largiadèr & O. Seehausen, 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–362.

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. W. & E. D. Brodie, 2015. Environmental effects on the structure of the G-matrix. Evolution 69: 2927–2940.

    Article  PubMed  Google Scholar 

  • Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the sixth international congress of genetics: 356–366.

Download references

Acknowledgments

We thank Bänz Lundsgaard-Hansen, Blake Matthews, Joana Meier, Julia Schwarzer, Matthew McGee and Etienne Bezault for helpful discussions and comments on the manuscript. Two anonymous reviewers and Martin Genner provided further constructive inputs. We acknowledge support from the Swiss National Science Foundation, Grant 31003A_144046 to OS. KL was funded by a Swiss National Science Foundation Early Postdoc. Mobility Grant P2BEP3_152103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Lucek.

Additional information

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research II: Behavior, Ecology and Evolutionary Biology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 330 kb)

Figure S1 A comparison of trait-by-trait covariances for Pundamilia pundamilia (ellipses in black) and P. nyereri (ellipses in blue) from Makobe Island. Covariances are scaled, hence only the differences in shape are shown. Red asterisks mark instances where the angle of the underlying LLR differs significantly (p < 0.05) between species, whereas green asterisks depict cases where the intercept differs between species. Abbreviations are as follow: BD - body depth, HL - head length, LJL - lower jaw length, LJW - lower jaw width, SnL - snout length, POD - preorbital depth, ChD - cheek depth, EyL - eye length, EyD - eye depth, IOW - interorbital width, POW - preorbital width, SnW - snout width

Supplementary material 2 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucek, K., Greuter, L., Selz, O.M. et al. Effects of interspecific gene flow on the phenotypic variance–covariance matrix in Lake Victoria Cichlids. Hydrobiologia 791, 145–154 (2017). https://doi.org/10.1007/s10750-016-2838-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2838-z

Keywords

Navigation