Skip to main content
Log in

Do interspecific competition and salinity explain plant zonation in a tropical estuary?

  • PLANTS IN AQUATIC SYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Environmental gradients and competition influence aquatic macrophyte distribution in estuaries. The competition-to-stress hypothesis states that some species are excluded from lower estuaries (high salinity) due to abiotic stress and others from upper estuaries (low salinity) by competition. The growth of Crinum americanum L. and Spartina alterniflora Loisel. in monoculture (10:0/0:10) and mixed culture (5:5) under different salinity levels (4/12/26) was analysed by a laboratory experiment (3 cultures × 3 sediment types × 3 replicate) to understand the role of competition and salinity on the distribution of these species in a tropical estuary as well as to verify whether the competition-to-stress hypothesis explains their zonation. We tested the hypothesis that S. alterniflora is not established in the upper estuary due to the effect of competition with C. americanum, whereas the latter presents restrictions to high salinity and has greater competitive ability in the upper estuary. Our data confirm the competition-to-stress hypothesis but not as proposed originally. We conclude that abiotic stress (low nutrient availability) is responsible for the absence of S. alterniflora in the upper estuary and that the competition between the two species is responsible for the absence of C. americanum in the lower estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbour, M. G., 1978. The effect of competition and salinity at growth of a salt marsh species. Oecologia 37: 93–99.

    Article  PubMed  Google Scholar 

  • Bertness, M. D., 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72: 138–148.

    Article  Google Scholar 

  • Bertness, M. D., L. Gough & S. W. Shumway, 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–1851.

    Article  Google Scholar 

  • Biudes, J. F. V. & A. F. M. Camargo, 2006. Changes in biomass, chemical composition and nutritive value of Spartina alterniflora due to organic pollution in the Itanhaém River Basin (SP, Brazil). Brazilian Journal of Biology 66: 781–789.

    Article  CAS  Google Scholar 

  • Burgos-León, A. M., D. Valdés, M. E. Vega & O. Defeo, 2013. Spatial struturing of submerged aquatic vegetation in an estuarine habitat of the Gulf of Mexico. Journal of the Marine Biological Association of the United Kingdom 93: 855–866.

    Article  Google Scholar 

  • Camargo, A. F. M. & E. R. Florentino, 2000. Population dynamics and net primary production of the aquatic macrophytes Nymphaea rudgeana C.F. Mey in a lotic environment of the Itanhaém River Basin (SP, Brazil). Brazilian Journal of Biology 60: 83–92.

    CAS  PubMed  Google Scholar 

  • Camargo, A. F. M., L. A. Pereira & A. M. M. Pereira, 2002. Ecologia da bacia hidrográfica do rio Itanhaém. In Schiavetti, A. & A. F. M. Camargo (eds), Conceitos de Bacias Hidrográficas. Editus, Ilhéus.

    Google Scholar 

  • Castillo, J. M., A. E. Rubio-Casal, S. Redondo, A. A. Ivarez-Lopez, T. Luque, C. Luque, F. J. Nieva, E. M. Castellanos & M. E. Figueroa, 2005. Short-term responses to salinity of an invasive cordgrass. Biological Invasions 7: 29–35.

    Article  Google Scholar 

  • Céccoli, G., J. Ramos, V. Pilatti, I. Dellaferrera, J. C. Tivano, E. Taleisnik & A. C. Vegetti, 2015. Salt glands in the Poaceae family and their relationship to salinity tolerance. The Botanical Review 81: 162–178.

    Article  Google Scholar 

  • Crain, C. M., B. R. Silliman, S. L. Bertness & M. D. Bertness, 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549.

    Article  Google Scholar 

  • Darby, F. A. & R. E. Turner, 2008. Below- and aboveground biomass of Spartina alterniflora: response to nutrient addition in a Louisiana Salt Marsh. Estuaries and Coasts 31: 326–334.

    Article  CAS  Google Scholar 

  • Engels, J. G. & K. Jensen, 2010. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119: 679–685.

    Article  Google Scholar 

  • Eyre, B. & P. Balls, 1999. A comparative study of nutrient behavior along the salinity gradient of tropical and temperate estuaries. Estuaries 22: 313–326.

    Article  CAS  Google Scholar 

  • French, T. D. & E. P. A. Chambers, 1996. Habitat partitioning in riverine macrophytes communities. Freshwater Biology 36: 509–520.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Climo & M. A. M. Ohnstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. IBP, Oxford.

    Google Scholar 

  • GraphPad Software, 2007. Prism (Data Analysis Software System), Version 5.

  • Greenwood, M. E. & G. R. MacFarlane, 2009. Effects of salinity on competitive interactions between two juncus species. Aquatic Botany 90: 23–29.

    Article  CAS  Google Scholar 

  • Guo, H. & S. C. Pennings, 2012. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary. Ecology 93: 90–100.

    Article  PubMed  Google Scholar 

  • He, Q. & B. R. Silliman, 2015. Biogeographic consequences of nutrient enrichment for plant–herbivore interactions in coastal wetlands. Ecology Letters 18: 462–471.

    Article  PubMed  Google Scholar 

  • Hellquist, C. E. & R. A. Black, 2010. The influence of intertidal zone and native vegetation on the survival and growth of Spartina anglica in Northern Puget Sound, WA, USA. In Ayres, D. R., D. W. Kerr, S. D. Ericson & P. R. Olofson (eds), Proceedings of the Third International Conference on Invasive Spartina, 8–10 November 2004. San Francisco Estuary Invasive Spartina Project of the California State Coastal Conservancy, Oakland, San Francisco, CA.

  • Henry-Silva, G. G. & A. F. M. Camargo, 2005. Interações ecológicas entre as macrófitas aquáticas flutuantes Eichhornia crassipes e Pistia stratiotes. Hoehnea 32: 445–452.

    Google Scholar 

  • Kao, J. T., J. E. Titus & W. X. Zhu, 2003. Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands 23: 979–987.

    Article  Google Scholar 

  • Kenkel, N. C., A. L. Mcllraith, C. A. Burchill & G. Jones, 1991. Competition and the response of three plant species to a salinity gradient. Canadian Journal of Botany 69: 2497–2502.

    Article  Google Scholar 

  • La Peyre, M. K. G., J. B. Grace, E. Hahn & I. A. Mendelssohn, 2001. The importance of competition in regulating plant species abundance along a salinity gradient. Ecology 82: 62–69.

    Article  Google Scholar 

  • Lipscshitz, N., A. Shomer-llan, A. Eshel & Y. Waisel, 1974. Salt glands on leaves of Rhodes grass (Chlorisgayana Kth). Annals of Botany 38: 459–462.

    Article  Google Scholar 

  • Mackereth, F. J., H. J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, London.

    Google Scholar 

  • Martin, G. D. & J. A. Coetzee, 2014. Competition between two aquatic macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients. Aquatic Botany 114: 1–11.

    Article  Google Scholar 

  • Medeiros, D. L., D. S. White & B. L. Howes, 2013. Replacement of Phragmites australis by Spartina alterniflora: the role of competition and salinity. Wetlands 33: 421–430.

    Article  Google Scholar 

  • Meerow, A. W., D. J. Lehmiller & J. L. Clayton, 2003. Phylogeny and biogeography of Crinum L. (Amaryllidaceae) inferred from nuclear and limited plastic non-coding DNA sequences. Botanical Journal of Linnean Society 141: 349–363.

    Article  Google Scholar 

  • Pennings, S. C. & M. D. Bertness, 1999. Using latitudinal variation to examine effects on climate on coastal salt marsh pattern and process. Current Topics in Wetland Biogeochemistry 3: 100–111.

    Google Scholar 

  • Pennings, S. C., M. B. Grant & M. D. Bertness, 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93: 159–167.

    Article  Google Scholar 

  • Ribeiro, J. P., R. S. Matsumoto, L. K. Takao, A. C. Peret & M. I. S. Lima, 2011. Spatial distribution of Crinum americanum in the tropical blind estuary: hydrologic, edaphic and biotic drivers. Environmental and Experimental Botany 71: 287–291.

    Article  Google Scholar 

  • Ribeiro, J. P., R. S. Matsumoto, L. K. Takao & M. I. S. Lima, 2015. Plant zonation in a tropical irregular estuary: can large occurrence zones be explained by a tradeoff model? Brazilian Journal of Biology 75: 511–516.

    Article  CAS  Google Scholar 

  • Rodríguez-Gallego, L., V. Sabaj, S. Masciadri, C. Kruk, R. Arocena & D. Conde, 2015. Salinity as a major driver for submerged aquatic vegetation in coastal lagoons: a multi-year analysis in the subtropical Laguna de Rocha. Estuaries and Coasts 38: 451–465.

    Article  Google Scholar 

  • Smart, R. M. & J. W. Barko, 1980. Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora. Ecology 61: 630–638.

    Article  CAS  Google Scholar 

  • StatSoft, INC., 2005. Statistica (Data Analysis Software System), Version 7.1.

  • Stribling, J. M., 1997. The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquatic Botany 56: 131–143.

    Article  CAS  Google Scholar 

  • Suguio, K., 1973. Introdução à sedimentologia. EDUSP, São Paulo.

    Google Scholar 

  • Tararam, A. S. & Y. Wakabara, 1987. Benthic fauna living on Spartina altemiflora of Cananéia estuarine lagoon (2S002′S–47°56′W). Boletim do Instituto Oceanográfico 35: 103–113.

    Article  Google Scholar 

  • Touchette, B. W., 2006. Salt tolerance in a Juncus roemerianus brackish marsh: spatial variations in plant water relations. Journal of Experimental Marine Biology and Ecology 337: 1–12.

    Article  CAS  Google Scholar 

  • van Gerven, L. P. A., J. J. M. de Klein, D. J. Gerla, B. W. Kooi, J. J. Kuiper & W. M. Mooij, 2015. Competition for light and nutrients in layered communities of aquatic plants. The American Naturalist 186: 72–83.

    Article  PubMed  Google Scholar 

  • Zhi, Y., H. Li, S. An, L. Zhao, C. Zhou & Z. Deng, 2007. Inter-specific competition: Spartina alterniflora is replacing Spartina anglica in coastal China. Estuarine, Coastal and Shelf Science 74: 437–448.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Carlos Fernando Sanches and Amarílis Brandão de Paiva, M.S., for assistance with the experiment, Cristiane Akemi Umetsu, Ph.D., for helping in the statistical analyses and Leonardo Farage Cancian, Ph.D., for drawing up the map of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laís Samira Correia Nunes.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, L.S.C., Camargo, A.F.M. Do interspecific competition and salinity explain plant zonation in a tropical estuary?. Hydrobiologia 812, 67–77 (2018). https://doi.org/10.1007/s10750-016-2821-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2821-8

Keywords

Navigation