, Volume 784, Issue 1, pp 9–19 | Cite as

Habitat use in juvenile and adult life stages of the sedentary fish Hippocampus guttulatus

  • Michele GristinaEmail author
  • Frine Cardone
  • Andrea Desiderato
  • Serena Mucciolo
  • Tamara Lazic
  • Giuseppe Corriero
Primary Research Paper


Understanding of the spatial distribution and habitat use in different stages of a life cycle represents the essential aspect of threatened species management and conservation. In the present paper, the spatial and temporal patterns of habitat use in juvenile and adult life stages of the long-snouted seahorse Hippocampus guttulatus in the Mar Piccolo of Taranto (Apulia—Italy) (40°28′N, 17°16′W) were examined. From October 2012 to January 2014, monthly visual censuses were conducted in six coastal habitats of a focal area (Buffoluto site). Of a total of 317 individuals of the long-snouted seahorse that were sighted, 148 were juveniles, 82 adult females and 87 adult males. Our results showed significant differences in the habitat use between adult and juvenile life stages of H. guttulatus. Adult individuals were mainly concentrated within Cladophora prolifera beds and the wood poles of a mussel farm at 2–4 m of depth, while juvenile individuals were mainly present in shallower water (0.4–1 m) on artificial hard substrates covered by a brown algae turf. Assessing and describing the habitat use within different life stages of H. guttulatus represent a useful tool to support species conservation by protecting the habitats it uses.


Hippocampus Underwater visual census Habitat use Nursery area Threatened species Conservation 


  1. Alabiso, G., M. Cannalire, D. Ghionda, M. Milillo, G. Leone & O. Caciorgna, 1997. Particulate matter and chemical-physical conditions of an inner sea: the Mar Piccolo in Taranto. A new statistical approach. Marine Chemistry 58: 373–388.CrossRefGoogle Scholar
  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  3. Anderson, M. J. & C. J. F. Ter Braak, 2003. Permutation test for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation 73: 85–113.CrossRefGoogle Scholar
  4. Ardizzone, G. D., P. Tucci, A. Somaschini & A. Belluscio, 2000. Is the bottom trawling partly responsible for the regression of Posidonia oceanica meadows in the Mediterranean Sea? In Kaiser, M. J. & J. de Groot (eds), The Effects of Fishing on Non-target Species and Habitats. Blackwell Scientific, Oxford: 37–46.Google Scholar
  5. Beck, M. W., K. L. Jr Heck, W. A. Kenneth, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. P. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 58: 633–641.CrossRefGoogle Scholar
  6. Bostrom, C., S. Baden, A. C. Bockelmann, K. Dromph, S. Fredriksen, C. Gustafsson, D. Krause-Jensen, T. Moller, S. Laurentius, B. Olesen, J. Olsen, L. Pihl & E. Rinde, 2014. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 410–434.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caldwell, I. R. 2012. Habitat use, movement, and vulnerability of sedentary fish in a dynamic world. Ph.D. thesis, University of British Columbia, Vancouver.Google Scholar
  8. Caldwell, J. R. & A. C. J. Vincent, 2012. Revisiting two sympatric European seahorse species: apparent decline in the absence of exploitation. Aquatic Conservation 22: 427–435.CrossRefGoogle Scholar
  9. Caldwell, J. R. & A. C. J. Vincent, 2013. A sedentary fish on the move: effects of displacement on long-snouted seahorse (Hippocampus guttulatus Cuvier) guttulatus movement and habitat use. Environmental Biology of Fishes 96: 67–75.CrossRefGoogle Scholar
  10. Calizza, E., M. L. Costantini, P. Carlino, F. Bentivoglio, L. Orlandi & L. Rossi, 2013. Posidonia oceanica habitat loss and changes in litter-associated biodiversity organization: a stable isotope-based preliminary study. Estuarine, Coastal and Shelf Science 135: 137–145.CrossRefGoogle Scholar
  11. Capasso, V., A. Di Liddo, F. Notarnicola, D. Posa & F. Rinaldi. 1989. Modelli matematici per il controllo della qualità delle acque costiere. Rapporto I.R.M.A.-C.N.R. 10/89, Bari, IT.Google Scholar
  12. Caroppo, C. & N. Cardellicchio, 1995. Phytoplankton of Mar Piccolo of Taranto (Jonian sea). Oebalia 21: 61–76.Google Scholar
  13. Cecere, E. & A. Petrocelli, 2009. The Mar Piccolo of Taranto. In Cecere, E., A. Petrocelli, A. Sfriso & G. Izzo (eds), Flora and Vegetation of the Italian Transitional Water Systems. CoRiLa, Multigraf, Spinea: 195–227.Google Scholar
  14. Childress, M. J. & W. F. Herrnkind, 2001. The guide effect influence on the gregariousness of juvenile Caribbean spiny lobsters. Animal Behaviour 62: 465–472.CrossRefGoogle Scholar
  15. CITES. 2001. Notification no. 2001/034. Notification to the Parties concerning: Seahorses and other members of the family Syngnathidae.
  16. Correia, M. 2015. Trends in seahorse abundance in the Ria Formosa, South Portugal: recent scenario and future prospects. Ph.D. Thesis, Universidade do Algarve, Faro.Google Scholar
  17. Correia, M., H. Koldewey, J. P. Andrade & J. Palma, 2015. Effects of artificial holdfast units on seahorse density in the Ria Formosa lagoon, Portugal. Journal of Experimental Marine Biology and Ecology 471: 1–7.CrossRefGoogle Scholar
  18. Curtis, J. M. R. 2004. Life history, ecology and conservation of European seahorses. Ph.D. thesis, McGill University, Montréal, QC.Google Scholar
  19. Curtis, J. M. R. & A. C. J. Vincent, 2005. Distribution of sympatric seahorse species along a gradient of habitat complexity in a seagrass-dominated community. Marine Ecology Progress Series 291: 81–91.CrossRefGoogle Scholar
  20. Curtis, J. M. R. & A. C. J. Vincent, 2006. Life history of an unusual marine fish: survival, growth and movement patterns of Hippocampus guttulatus Cuvier 1829. Journal of Fish Biology 68: 707–733.CrossRefGoogle Scholar
  21. Dahlgren, C. P. & D. B. Eggleston, 2000. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81: 2227–2240.CrossRefGoogle Scholar
  22. De Biasi, A. M., 2004. Impact of experimental trawling on the benthic assemblage along the Tuscany coast (north Tyrrhenian Sea, Italy). ICES Journal of Marine Science 61: 1260–1266.CrossRefGoogle Scholar
  23. Doherty, P. J. & D. M. Williams, 1988. The replenishment of coral reef fish population. Oceanography and Marine Biology 26: 487–551.Google Scholar
  24. Foster, S. J. & A. C. J. Vincent, 2004. Life history and ecology of seahorses: implications for conservation and management. Journal of Fish Biology 65: 1–61.CrossRefGoogle Scholar
  25. Gaino, E., F. Cardone & G. Corriero, 2010. Reproduction of the intertidal sponge Hymeniacidon perlevis (Montagu) along a bathymetric gradient. Open Marine Biology Journal 4: 47–56.CrossRefGoogle Scholar
  26. Garofalo, G., T. Fortibuoni, M. Gristina, M. Sinopoli & F. Fiorentino, 2011. Persistence and co occurrence of demersal nurseries in the Strait of Sicily (central Mediterranean): implications for fishery management. Journal of Sea Research 66: 29–38.CrossRefGoogle Scholar
  27. Garrick-Maidment, N. 2011. British Seahorse Survey Report 2011. The Seahorse Trust. Published online.
  28. Garrick-Maidment, N. 2012. Seahorses in Poole Harbour in Dorset. The Seahorse Trust. Published online.
  29. Garrick-Maidment, N., E. Durant & J. Newman. 2014. Year 5 report on the Seahorse Tagging Project at South Beach, Studland Bay in Dorset. The Seahorse Trust. Published online.
  30. Gristina, M. 2015. Ecologia, biologia e conservazione di Hippocampus guttulatus (Couvier, 1829). Ph.D. thesis, University Aldo Moro of Bari.Google Scholar
  31. Gristina, M., F. Fiorentino, V. Gancitano, D. Massi, S. Mirto & G. Garofalo, 2013. The role of juveniles in structuring demersal assemblages in trawled fishing grounds. Estuarine Coastal Shelf Science 133: 78–87.CrossRefGoogle Scholar
  32. Gristina, M., F. Cardone, R. Carlucci, L. Castellano, S. Passarelli & G. Corriero, 2015. Abundance, distribution and habitat preference of Hippocampus guttulatus and Hippocampus hippocampus in a semi-enclosed central Mediterranean marine area. Marine Ecology 36: 57–66.CrossRefGoogle Scholar
  33. Grol, M. G. G., I. Nagelkerken, A. L. Rypel & C. A. Layman, 2011. Simple ecological trade-offs give rise to emergent cross ecosystem distributions of a coral reef fish. Oecologia 165: 79–88.CrossRefPubMedGoogle Scholar
  34. Harasti, D., K. Martin-Smith & W. Gladstone, 2012. Population dynamics and life history of a geographically restricted seahorse, Hippocampus whitei. Journal of Fish Biology 81(4): 1297–1314.CrossRefPubMedGoogle Scholar
  35. Harasti, D., K. Martin-Smith & W. Gladstone, 2014. Ontogenetic and sex-based differences in habitat preferences and site fidelity of the White’s seahorse Hippocampus whitei. Journal of Fish Biology 85: 1413–1428.CrossRefPubMedGoogle Scholar
  36. Hellyer, C. B., D. Harasti & A. G. B. Poore, 2011. Manipulating artificial habitats to benefit seahorses in Sydney Harbour, Australia. Aquatic Conservation 21: 582–589.CrossRefGoogle Scholar
  37. Houde, E., 2008. Emerging from Hjort’s shadow. Journal of Northwest Atlantic Fishery Science 41: 53–70.CrossRefGoogle Scholar
  38. IUCN, 2013. IUCN Red List of Threatened Species. Available at Accessed 15 Jan 2014.
  39. Kitsos, M. S., T. Tzomos, L. Anagnostopoulou & A. Koukouras, 2008. Diet composition of the seahorses, Hippocampus guttulatus Cuvier, 1829 and Hippocampus hippocampus (L. 1758) (Teleostei, Syngnathidae) in the Aegean Sea. Journal of Fish Biology 72: 1259–1267.CrossRefGoogle Scholar
  40. Kuiter, R. H., 2009. Seahorses and their relatives. Aquatic Photographs, Seaford, AUS.Google Scholar
  41. Levinton, J. S. & M. McCartney, 1991. The use of photosynthetic pigments in sediments as a tracer for sources and fates of macrophyte organic matter. Marine Ecology Progress Series 78: 87–96.CrossRefGoogle Scholar
  42. Lourie, S. A. 2003. Measuring seahorses. Project Seahorse Technical Report No. 4, Version 1.0, Project Seahorse, Fisheries Centre, University of British Columbia, BC.Google Scholar
  43. Lourie, S. A., S. J. Foster, E. W. T. Cooper & A. C. J. Vincent. 2004. A Guide to the Identification of Seahorses. Project Seahorse and TRAFFIC North America, Washington DC, University of British Columbia and World Wildlife FundGoogle Scholar
  44. Middleton, M. J., J. D. Bell, J. J. Burchmore, D. A. Pollard & B. C. Pease, 1984. Structural differences in the fish communities of Zostera capricorni and Posidonia australis seagrass meadows in Botany Bay, New South Wales. Aquatic Botany 18: 89–109.CrossRefGoogle Scholar
  45. Morgan, S. K. & A. C. J. Vincent, 2007. The ontogeny of habitat associations in the tropical tiger tail seahorse Hippocampus comes Cantor, 1850. Journal of Fish Biology 71: 701–724.CrossRefGoogle Scholar
  46. Perante, N. C., M. G. Pajaro, J. J. Meeuwig & A. C. J. Vincent, 2002. Biology of a seahorse species Hippocampus comes in the central Philippines. Journal of Fish Biology 60: 821–837.CrossRefGoogle Scholar
  47. Prato, E. & F. Biandolino, 2003. Seasonal changes in population of the Amphipod Gammarus aequicauda (Martynov, 1931). Mediterranean Marine Science 4: 49–56.CrossRefGoogle Scholar
  48. Reynolds, J. D., N. K. Dulvy, N. B. Goodwin & J. A. Hutchings, 2005. Biology of extinction risk in marine fishes. Proceedings of the Royal Society B 272: 2337–2344.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rosenberg, A., T. E. Bigford, S. Leathery, R. L. Hill & K. Bickers, 2000. Ecosystem approaches to fishery management through essential fish habitat. Bulletin Marine Science 66: 535–542.Google Scholar
  50. Sales, M. & E. Ballestreros, 2012. Seasonal dynamics and annual production of Cystoseira crinita (Fucales: Ochrophyta) dominated assemblages from the northwestern Mediterranean. Scientia Marina 76(2): 391–401.CrossRefGoogle Scholar
  51. Samoilys, M. A., 1997. Manual for Assessing Fish Stocks on Pacific Coral Reefs. Queensland Department of Primary Industries, Brisbane, QLD.Google Scholar
  52. Telesca, L., A. Belluscio, A. Criscoli, A. Ardizzone, E. T. Apostolaki, S. Fraschetti, M. Gristina, L. Knittweis, C. S. Martin, G. Pergent, A. Alagna, F. Badalamenti, G. Garofalo, V. Gerakaris, M. L. Pace, C. Pergent-Martini & M. Salomidi, 2015. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Scientific Report. doi: 10.1038/srep12505.Google Scholar
  53. Tuckey, T. D. & M. Dehaven, 2006. Fish assemblages found in tidal-creek and seagrass habitats in the Suwannee River estuary. Fish B-NOAA 104: 102–111.Google Scholar
  54. Tuya, F., R. Haroun & F. Espino, 2014. Economic assessment of ecosystem services: monetary value of seagrass meadows for coastal fisheries. Ocean & Coastal Management 96: 181–187.CrossRefGoogle Scholar
  55. Vincent, A. C. J. & H. J. Hall, 1996. The threatened status of marine fishes. Tree 11(9): 1–3.Google Scholar
  56. Wells, R. J. & J. R. Rooker, 2004. Spatial and temporal habitat use by fishes associated with Sargassum mats in the NW Gulf of Mexico. Bulletin Marine Science 74: 81–99.Google Scholar
  57. Whitfield, A. K., 1995. Threatened fishes of the world: Hippocampus capensis Boulenger 1900 (Syngnathidae). Environmental Biology of Fishes 44: 362.CrossRefGoogle Scholar
  58. Woodall, L. 2009. Population genetics and mating systems of European seahorses Hippocampus guttulatus and Hippocampus hippocampus. Ph.D. thesis, University of London, London.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michele Gristina
    • 1
    Email author
  • Frine Cardone
    • 2
  • Andrea Desiderato
    • 2
  • Serena Mucciolo
    • 2
  • Tamara Lazic
    • 2
  • Giuseppe Corriero
    • 2
  1. 1.CNR-IAMCMazara del ValloItaly
  2. 2.Dipartimento di BiologiaUniversità degli Studi di BariBariItaly

Personalised recommendations