Advertisement

Hydrobiologia

, Volume 780, Issue 1, pp 135–143 | Cite as

Environmental and genetic effects on larval hatching time in two coregonids

  • J. KarjalainenEmail author
  • L. Jokinen
  • T. Keskinen
  • T. J. Marjomäki
EUROPEAN LARGE LAKES IV

Abstract

Hatching time (HT) of autumn-spawning fishes depends strongly on the egg incubation temperature and especially on the warming of water in spring, which synchronizes the hatching with ice-out despite the large inter-annual variability in spring phenology. However, the relative roles of genetic and environmental effects on the HT have rarely been explored. We studied experimentally the parental effects on the HT and size of vendace (Coregonus albula (L.)) and whitefish (C. lavaretus L.) larvae under short and long winter conditions using a full-factorial breeding design. Both parents significantly affected the HT of vendace, mostly by additive genetic effects, and the difference between short and long winter treatment was also significant. In whitefish, the female × male interaction was significant, implying non-additive genetic effects. The maximum range of the HT of eggs between parent pairs within certain winter condition was 3 weeks and was clearly lower than the potential range for the temperature-adjusted HT. The size of eggs or hatched larvae did not correlate with the HT in either of the species. The variation in HT between eggs from different parents creates a basis for genetic adaptation to climate change and for local adaption of populations in their thermal environments.

Keywords

Breeding Climate resilience Phenology Spring Vendace Whitefish 

Notes

Acknowledgments

We thank the staff of the Konnevesi Research Station for their invaluable help during the long-lasting experiments and prof. Roger Jones who kindly checked the language.

References

  1. Aberle, N., B. Bauer, A. Lewandowska, U. Gaedke & U. Sommer, 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Marine Biology 159: 2441–2453.CrossRefGoogle Scholar
  2. Alderdice, D. F. & F. P. J. Velsen, 1978. Relation between temperature and incubation time for eggs of chinook salmon (Oncorhynchus tshawytscha). Journal of Fisheries Research Board of Canada 35: 69–75.CrossRefGoogle Scholar
  3. Baird, H. B., C. C. Krueger & D. C. Josephson, 2002. Differences in incubation period and survival of embryos among brook trout strains. North American Journal of Aquaculture 64: 233–241.CrossRefGoogle Scholar
  4. Bang, A., P. Grønkjær, C. Clemmesen & H. Høie, 2006. Parental effects on early life history traits of Atlantic herring (Clupea harengus L.) larvae. Journal of Experimental Marine Biology 334: 51–63.CrossRefGoogle Scholar
  5. Bradford, M. J. & G. Cabana, 1997. Interannual variability in stage-specific survival rates and the causes of recruitment variation. In Chambers, R. C. & E. A. Trippel (eds), Early Life History and Recruitment in Fish Populations. Chapman and Hall, London: 469–493.CrossRefGoogle Scholar
  6. Bradshaw, W. E. & C. M. Holzapfel, 2006. Climate change - evolutionary response to rapid climate change. Science 312: 477–1478.CrossRefGoogle Scholar
  7. Crozier, L. G. & J. A. Hutchings, 2014. Plastic and evolutionary responses to climate change in fish. Evolutionary Applications. doi: 10.1111/eva.12135.Google Scholar
  8. Eckmann, R., 1987. A comparative study on the temperature dependence of embryogenesis in three coregonids (Coregonus spp.) from lake constance. Schweizerische Zeitschrift fur Hydrologie 49(3): 353–361.CrossRefGoogle Scholar
  9. Gienapp, P., C. Teplitsky, J. S. Alho, J. A. Mills & J. Merilä, 2008. Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology 17: 167–178.CrossRefPubMedGoogle Scholar
  10. Hubbs, C. & N. E. Armstrong, 1962. Developmental temperature tolerance of Texas and Arkansas-Missouri Etheostoma spectabile (Percidae, Osteichthyes). Ecology 43: 742–744.CrossRefGoogle Scholar
  11. Hubbs, C. & K. Strawn, 1963. Differences in the developmental temperature tolerance of Central Texas and more northern stocks of Percina caprodes (Percidae: Osteichthyes). Southwestern Naturalist 8: 43–45.CrossRefGoogle Scholar
  12. Huuskonen, H., J. Kekäläinen, B. Panda, T. Shikano & R. Kortet, 2011. Embryonic survival and larval predator-avoidance ability in mutually ornamented whitefish. Biological Journal of the Linnean Society 103: 593–601.CrossRefGoogle Scholar
  13. Jokinen, L., T. Keskinen, K. E. Knott, T. J. Marjomäki & J. Karjalainen, 2016. The effects of parents on offspring mortality in vendace, Coregonus albula (L.). Hydrobiologia (in ELLS volume).Google Scholar
  14. Kamler, E., H. Zuromska & T. Nissinen, 1982. Bioenergetical evaluation of environmental and physiological factors determining egg quality and growth in Coregonus albula (L.) [in lakes of Poland and Finland]. Polskie Archivum für Hydrobiologie 29: 71–121.Google Scholar
  15. Karjalainen, J., H. Helminen, A. Huusko, H. Huuskonen, T. J. Marjomäki, J. P. Pääkkönen, J. Sarvala & M. Viljanen, 2002. Littoral-pelagic distribution of newly hatched vendace and whitefish larvae in Finnish lakes. Archiv für Hydrobiologie Special Issues for Advanced Limnology 57: 367–382.Google Scholar
  16. Karjalainen, J., T. Keskinen, M. Pulkkanen & T. J. Marjomäki, 2014. Climate change alters the egg development dynamics in cold-water adapted coregonids. Environmental Biology of Fishes 97: 1–13.CrossRefGoogle Scholar
  17. Kavanaugh, K. D., T. O. Haugen, F. Gregersen, J. Jernvall & A. Vøllestad, 2010. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation. BMC Evolutionary Biology 10: 350.CrossRefGoogle Scholar
  18. Kekäläinen, J., H. Huuskonen, M. Tuomaala & R. Kortet, 2010. Both male and female sexual ornaments reflect offspring performance in a fish. Evolution 64: 3149–3157.CrossRefPubMedGoogle Scholar
  19. Kennedy, J., A. J. Geffen & R. D. M. Nash, 2007. Maternal influences on egg and larval characteristics of plaice (Pleuronectes platessa L.). Journal of Sea Research 58: 65–77.CrossRefGoogle Scholar
  20. Koumoundouros, G., P. Divanach, L. Anezaki & M. Kentouri, 2001. Temperature-induced ontogenetic plasticity in sea bass (Dicentrarchus labrax). Marine Biology 139: 817–830.CrossRefGoogle Scholar
  21. Koumoundouros, G., M. Pavlidis, L. Anezaki, C. Kokkari, A. Sterioti, P. Divanach & M. Kentouri, 2002. Temperature sex determination in the European sea bass, Dicentrarchus labrax (L., 1758) (Teleostei, Perciformes, Moronidae): critical sensitive ontogenetic phase. Journal of Experimental Zoology 292: 573–579.CrossRefPubMedGoogle Scholar
  22. Lancaster, J. & B. J. Downes, 2013. Aquatic Entomology. Oxford University Press, Oxford.CrossRefGoogle Scholar
  23. Luczynski, M. & A. Kirklewska, 1984. Dependence of Coregonus albula embryogenesis rate on the incubation temperature. Aquaculture 42: 43–55.CrossRefGoogle Scholar
  24. Lynch, M. & B. Walsh, 1998. Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland.Google Scholar
  25. Miller, T. J., L. B. Crowder, J. A. Rice & E. A. Marschall, 1988. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Canadian Journal of Fisheries and Aquatic Sciences 45: 1657–1670.CrossRefGoogle Scholar
  26. Nagler, J. J., J. E. Parsons & J. G. Cloud, 2000. Single pair mating indicates maternal effects on embryo survival in rainbow trout, Oncorhynchus mykiss. Aquaculture 184: 177–183.CrossRefGoogle Scholar
  27. Neff, B. D. & T. E. Pitcher, 2005. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Molecular Ecology 14: 19–38.CrossRefPubMedGoogle Scholar
  28. Nyberg, P., E. Bergstrand, E. Degerman & O. Enderlein, 2001. Recruitment of pelagic fish in an unstable climate: studies in Sweden’s four largest lakes. Ambio 30: 559–564.CrossRefPubMedGoogle Scholar
  29. Oomen, R. A. & J. A. Hutchings, 2015. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish. Conservation Physiology. doi: 10.1093/conphys/cov027.PubMedPubMedCentralGoogle Scholar
  30. Otterå, H., A.-L. Agnalt, A. Thorsen, O. S. Kjesbu, G. Dahle & K. Jørstad, 2012. Is spawning time of marine fish imprinted in the genes? A two-generation experiment on local Atlantic cod (Gadus morhua L.) populations from different geographical regions. ICES Journal of Marine Science 69: 1722–1728.CrossRefGoogle Scholar
  31. Pauly, D. & R. S. V. Pullin, 1988. Hatching time in spherical, pelagic, marine fish eggs in response to temperature and egg size. Environmental Biology of Fishes 22: 261–271.CrossRefGoogle Scholar
  32. Probst, W. N., G. Kraus, R. M. Rideout & E. A. Trippel, 2006. Parental effects on early life history traits of haddock Melanogrammus aeglefinus. ICES Journal of Marine Science. 63: 224–234.CrossRefGoogle Scholar
  33. Rogers, M. W., M. S. Allen & W. F. Porak, 2006. Separating genetic and environmental influences on temporal spawning distributions of largemouth bass (Micropterus salmoides). Canadian Journal of Fisheries and Aquatic Science 63: 2371–2399.CrossRefGoogle Scholar
  34. Trippel, E. A., G. Kraus & F. W. Köster, 2005. Maternal and paternal influences on early life history traits and processes of Baltic cod Gadus morhua. Marine Ecology Progress Series 303: 259–267.CrossRefGoogle Scholar
  35. Urpanen, O., H. Huuskonen, T. J. Marjomäki & J. Karjalainen, 2005. Growth and size-selective mortality of vendace (Coregonus albula (L.)) and whitefish (C. lavaretus L.) larvae. Boreal Environment Research 10: 225–238.Google Scholar
  36. Viljanen, M. & J. Koho, 1991. The effects of egg size and incubation conditions on life history of vendace (Coregonus albula L.). Verhandlungen des Internationalen Verein Limnologie 24: 2418–2423.Google Scholar
  37. Wedekind, C. & R. Müller, 2004. Parental characteristics versus egg survival: towards an improved genetic management in the supportive breeding of lake whitefish. Annales Zoologici Fennici 41: 105–115.Google Scholar
  38. Wedekind, C., R. Müller & H. Spichers, 2001. Potential genetic benefits of mate selection in whitefish. Journal of Evolutionary Biology 14: 980–986.CrossRefGoogle Scholar
  39. Wedekind, C., G. Evanno, D. Urbach, A. Jacob & R. Müller, 2007. ‘Good-genes’ and ‘compatible-genes’ effects in an Alpine whitefish and the information content of breeding tubercles over the course of the spawning season. Genetica 134: 21–30.CrossRefGoogle Scholar
  40. Wright, P. J. & E. A. Trippel, 2009. Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success. Fish and Fisheries 10: 283–304.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Karjalainen
    • 1
    Email author
  • L. Jokinen
    • 1
  • T. Keskinen
    • 2
  • T. J. Marjomäki
    • 1
  1. 1.Department of Biological and Environmental Science, University of JyväskyläUniversity of JyväskyläFinland
  2. 2.Natural Resources Institute Finland (Luke)JyväskyläFinland

Personalised recommendations