, Volume 780, Issue 1, pp 47–57 | Cite as

Effects of winter severity on spring phytoplankton development in a temperate lake (Lake Erken, Sweden)

  • Yang YangEmail author
  • Csilla Stenger-Kovács
  • Judit Padisák
  • Kurt Pettersson


Phytoplankton seasonal succession has been linked to a variety of serial environmental changes, especially weather- and climate-induced physical forcing. This study compared spring phytoplankton dynamics after winters of different severity (cold, normal, and warm) in Lake Erken, Sweden. The spring diatom bloom was dominated by different functional groups: group A (centric diatoms 5–10 μm) after cold winters, B (centric diatoms >15 μm) after normal winters, and P (Aulacoseira granulata, Fragilaria crotonensis) after warm winters. Our results suggest that weather-related processes were the primary external drivers accounting for differences in spring phytoplankton dynamics in Lake Erken. Spring phytoplankton are influenced by overwintering species from the last autumn that can initiate the following spring bloom. Average taxonomic distinctness of the spring community was assessed using a new biodiversity measurement that incorporates taxonomic relatedness information. This value was lower than expected after warm and cold winters, which had winter air temperature 1°C deviation from an average value calculated over 21 years. Such winters increased the level of disturbance or stress to the lake, resulting in a spring with less diverse phytoplankton by narrowing the niche for species with various ecological requirements.


Winter severity Phytoplankton dynamics Spring bloom Stratification Taxonomic distinctness 



We express our gratitude to staff at Erken Laboratory, one of nine research stations of SITES (Swedish Infrastructure for Ecosystem Science) for sampling, water chemical analyses, and equipment maintenance. We thank Don Pierson for the help with the language and two anonymous reviewers for their valuable comments.


  1. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. L. Van Donk, G. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adrian, R., S. Wilhem & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12: 652–661.CrossRefGoogle Scholar
  3. Alvarez, E., E. Nogueira, J. Acuna, M. Lopez-Zlvarez & J. A. Sostres, 2008. Short-term dynamics of late-winter phytoplankton blooms in a temperate ecosystem (Central Cantabrian Sea, Southern Bay of Biscay). Journal of Plankton Research 31: 601–617.CrossRefGoogle Scholar
  4. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. Weyhenmeyer, G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe. A meta-analysis. Global Change Biology 13: 1314–1326.CrossRefGoogle Scholar
  5. Clark, K. R. & R. M. Warrick, 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523–531.CrossRefGoogle Scholar
  6. Clark, K. R. & R. M. Warrick, 1999. The taxonomic distinctness measure of biodiversity weighting of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21–29.CrossRefGoogle Scholar
  7. Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.CrossRefGoogle Scholar
  8. Elliott, J. A., C. S. Reynolds & A. E. Irisch, 2001. An investigation of dominance in phytoplankton using the PROTECH model. Freshwater Biology 46: 99–108.Google Scholar
  9. George, D. G., 2002. De-coupling natural and anthropogenic sources of variation in the lakes of the English Lake District. Verhandlungen des Internationalen Vereingung für theoretische und angewandte Limnologie 27: 321–325.Google Scholar
  10. Hall, S. J. & S. P. Greenstreet, 1998. Taxonomic distinctness and diversity measures: responses in marine fish communities. Marine Ecology Progress Series 166: 227–229.CrossRefGoogle Scholar
  11. Hampton, S., M. Moore, T. Ozersky, E. Stanley, C. M. Polashenski & A. Galloway, 2015. Heating up a cold subject: prospects for under-ice plankton research in lakes. Journal of Plankton Research 37: 277.CrossRefGoogle Scholar
  12. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–473.CrossRefGoogle Scholar
  13. Hillebrand, H., D. M. Bennett & M. W. Cadotte, 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89: 1510–1520.CrossRefPubMedGoogle Scholar
  14. Horn, H., P. Lothar, H. Wolfgang & P. Thomas, 2011. Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favoured by warm winters? Freshwater Biology 56: 2483–2499.CrossRefGoogle Scholar
  15. Huertas, E., M. Rouco, V. López-Rodas & E. Costas, 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society 278: 3534–3543.CrossRefGoogle Scholar
  16. Legendre, L., 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. Journal of Plankton Research 12: 681–699.CrossRefGoogle Scholar
  17. Livingstone, D. M., 2000. Large scale climatic forcing detected in historical observations of lake-ice break-up. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 27: 2775–2783.Google Scholar
  18. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The invented microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  19. McKnight, D. M., B. L. Howes, C. D. Taylor & D. D. Goehringer, 2000. Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. Journal of Phycology 36: 852–861.CrossRefGoogle Scholar
  20. Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnology and Oceanography 10: 280–282.CrossRefGoogle Scholar
  21. Mullin, J. B. & J. P. Riley, 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Analytical Chimica Acta 12: 162–176.CrossRefGoogle Scholar
  22. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytical Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  23. Oksanen J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2015. Vegan: Community Ecology. Package. R package version 2.0-10.Google Scholar
  24. Özkundakci, D., A. S. Gsell, T. Hintze, G. Täuscher & R. Adrian, 2015. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. Global Change Biology. doi: 10.1111/gcb.13085.PubMedGoogle Scholar
  25. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  26. Pechlaner, R., 1970. The phytoplankton spring outburst and its conditions in Lake Erken (Sweden). Limnology and Oceanography 15: 113–130.CrossRefGoogle Scholar
  27. Pettersson, K., 1985. The Availability of phosphorus and the species composition of the spring phytoplankton in Lake Erken. Hydrobiologia 70: 527–546.Google Scholar
  28. Pettersson, K., 1990. The spring development of phytoplankton in Lake Erken: species composition, biomass, primary production and nutrient conditions – a review. Hydrobiologia 191: 9–14.CrossRefGoogle Scholar
  29. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–482.CrossRefGoogle Scholar
  30. Rogers, S. I., K. R. Clark & J. D. Reynolds, 1999. The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic. Journal of Animal Ecology 68: 769–782.CrossRefGoogle Scholar
  31. Salmi, P. & K. Salonen, 2015. Regular build-up of the spring phytoplankton maximum before ice-break in a boreal lake. Limnology and Oceanography. doi: 10.1002/lno.10214.Google Scholar
  32. Salmi, P., A. Lehmijoki & K. Salonen, 2014. Development of picoplankton during natural and enhanced mixing under late-winter ice. Journal of Plankton Research 36: 1501–1511.CrossRefGoogle Scholar
  33. Salonen, K., M. Leppäranta, M. Viljanen & R. D. Gulati, 2009. Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquatic Ecology 43: 609–616.CrossRefGoogle Scholar
  34. SAS Institute Inc, 2014. Using JMP @ 11, 2nd ed. SAS Institute Inc, Cary.Google Scholar
  35. Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Archiv für Hydrobiology 98/Algological Studies 133: 49–69.Google Scholar
  36. Smetacek, V. & U. Passow, 1990. Spring bloom initiation and Sverdrup’s critical-depth model. Limnology and Oceanography 35: 228–234.CrossRefGoogle Scholar
  37. Somerfield, P. J., F. Olsgard & M. R. Carr, 1997. A further examination of two new taxonomic distinctness measures. Marine Ecology Progress Series 154: 303–306.CrossRefGoogle Scholar
  38. Sommer, U., 1996. Plankton-ecology – the last two decades of progress. Naturwissenschaften 83: 293–301.CrossRefGoogle Scholar
  39. Sommer, U. & A. Lewandowska, 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17: 154–162.CrossRefGoogle Scholar
  40. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of plankton in fresh waters. Archiv fur Hydrobiologie 106: 433–471.Google Scholar
  41. Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lurling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.CrossRefGoogle Scholar
  42. Stenger-Kovács, C., É. Hajnal, E. Lengyel, K. Buczkó & J. Padisák, 2016. A test of traditional diversity measures and taxonomic distinctness indices on benthic diatoms of soda pans in the Carpathian basin. Ecological Indicators 64: 1–8.CrossRefGoogle Scholar
  43. Straile, D., K. Joehnk & H. Rossknecht, 2003. Complex effects of winter warming on the physico-chemical characteristics of a deep lake. Limnology and Oceanography 48: 1432–1438.CrossRefGoogle Scholar
  44. Tilman, D., R. L. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon, and nitrogen. Archiv fur Hydrobiologie 106: 473–485.Google Scholar
  45. Timoshkin, O. A., 2001. Lake Baikal: diversity of fauna, problems of its immiscibility and origin, ecology and ‘exotic’ communities. In Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area. Nauka Publishers, Novosibirsk.Google Scholar
  46. Weyhenmeyer, G., T. Blenckner & K. Pettersson, 1999. Changes of the plankton spring outburst related to North Atlantic oscillation. Limnology and Oceanography 44: 1788–1792.CrossRefGoogle Scholar
  47. Weyhenmeyer, G., M. Meili & D. M. Livingstone, 2004. Nonlinear temperature response of lake ice breakup. Geophysical research letters 31: L07203.CrossRefGoogle Scholar
  48. Wiltshire, K. H. & B. F. J. Manly, 2004. The warming trend at Helgoland Roads, North Sea: Phytoplankton response. In Wiltshire, K. H. (ed.), Helgoland Marine Research 58: 269–273.Google Scholar
  49. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  50. Wood, E. D., F. A. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom 47: 23–31.CrossRefGoogle Scholar
  51. Yang, Y., J. Padisák & K. Pettersson, 2016. Repetitive baselines of phytoplankton succession in an unstably stratified temperate lake (Lake Erken, Sweden) – a long term analysis. Hydrobiologia 764: 211–227.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yang Yang
    • 1
    Email author
  • Csilla Stenger-Kovács
    • 2
  • Judit Padisák
    • 2
    • 3
  • Kurt Pettersson
    • 1
  1. 1.Erken Laboratory, Department of Ecology and GeneticsUppsala UniversityNorrtäljeSweden
  2. 2.Department of LimnologyUniversity of PannoniaVeszprémHungary
  3. 3.MTA-PE Limnoecology Research GroupVeszprémHungary

Personalised recommendations