Skip to main content

Competition between invasive Lemna minuta and native L. minor in indoor and field experiments

Abstract

The invasion of aquatic ecosystems by introduced invasive alien species (IAS) has become a worldwide phenomenon, and often leads to competitive interactions with native species. At high-nutrient levels, native species mostly are outcompeted by the introduced species. We performed an outdoor competition experiment between IAS free-floating Lemna minuta and native Lemna minor in a eutrophicated pond to examine whether the invasive species is the better competitor. We additionally performed an indoor experiment resembling mesotrophic phosphorus (P) conditions to investigate both species’ competitiveness in low P availability and compared with previous experiments at high-nutrient levels. Our results showed that in field conditions, the alien L. minuta was the better competitor. In the mesotrophic indoor condition, however, the native L. minor was the better competitor. Both species produced longer roots in the indoor experiment compared to field conditions. The species’ relative growth rates were also lower in the indoor experiment. A P reduction to mesotrophic condition in the water column thus might reduce invasive L. minuta growth and competitive performance. Additionally, introduction and recovery of L. minor could reduce L. minuta cover, but only following P reduction. Field experiments in mesotrophic ponds are needed to confirm these indoor findings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Adair, E. C., I. C. Burke & W. K. Lauenroth, 2008. Contrasting effects of resource availability and plant mortality on plant community invasion by Bromus tectorum L. Plant and Soil 304: 103–115.

    CAS  Article  Google Scholar 

  • Aerts, R., 1999. Interspecific competition in natural plant communities: mechanisms, tradeoffs and plant–soil feedbacks. Journal of Experimental Botany 50: 29–37.

    CAS  Article  Google Scholar 

  • Avalos, G., K. Hoell, J. Gardner, S. Anderson & C. Lee, 2006. Impact of the invasive plant Syzigium jambos (Myrtaceae) on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica. Revista de Biologia Tropical 54: 415–421.

    Article  PubMed  Google Scholar 

  • Barrat-Segretain, M. H. & A. Elger, 2004. Experiments on growth interactions between two invasive macrophyte species. Journal of Vegetation Science 15: 109–114.

    Article  Google Scholar 

  • Bazzaz, F. A., 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21: 167–196.

    Article  Google Scholar 

  • Benton, T. G., M. Solan, J. M. J. Travis & S. M. Sait, 2007. Microcosm experiments can inform global ecological problems. Trends in Ecology and Evolution 22: 516–521.

    Article  PubMed  Google Scholar 

  • Brönmark, C. & L. A. Hansson, 2005. The Biology of Lakes and Ponds, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Burns, J. H., 2004. A comparison of invasive and non-invasive day flowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions 10: 387–397.

    Article  Google Scholar 

  • Cahill, D. M., J. E. Rookes, B. A. Wilson, L. Gibson & K. L. Mcdougall, 2008. Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Australian Journal of Botany 56: 279–310.

    Article  Google Scholar 

  • Carpenter, S. R., 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–680.

    Article  Google Scholar 

  • Connolly, J. & P. Wayne, 2005. Assessing determinants of community biomass composition in two-species plant competition studies. Oecologia 142: 450–457.

    Article  PubMed  Google Scholar 

  • Daehler, C. C., 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematics 34: 183–211.

    Article  Google Scholar 

  • Denys, L., J. Packet & W. Van Landuyt, 2004. Neofyten in het Vlaamse water: signalement van vaste waarden en rijzende sterren. Natuur.focus 3(4): 120–128.

    Google Scholar 

  • El-Keblawy, A. & A. Al-Rawal, 2007. Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecology 190: 23–35.

    Article  Google Scholar 

  • Elster, J., J. Kvèt & V. Hauser, 1995. Root length of duckweeds (Lemnaceae) as an indicator of water trophic status. Ekologia (Bratislava) 14: 43–59.

    Google Scholar 

  • Elton, C. S., 1958. The Ecology of Invasions by Animals and Plants. Methuen, London.

    Book  Google Scholar 

  • Environment Canada, 1999. Biological Test Method – Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte Lemna minor. Report EPS 1/RM/37.

  • Fan, S. F., C. H. Liu, D. Yu & D. Xie, 2013. Differences in leaf nitrogen content, photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels. Hydrobiologia 711: 129–137.

    CAS  Article  Google Scholar 

  • Fogarti, G. & J. M. Facelli, 1999. Growth and competition of Cytisus scoparius, an invasive shrub and Australian native shrubs. Plant Ecology 144: 27–35.

    Article  Google Scholar 

  • Funk, J. L. & P. M. Vitousek, 2007. Resource-use efficiency and plant invasion in low resource systems. Nature 446: 1079–1081.

    CAS  Article  PubMed  Google Scholar 

  • Garcia-Serrano, H., F. X. Sans & J. Escarre, 2007. Interspecific competition between alien and native congeneric species. Acta Oecologica 31: 69–78.

    Article  Google Scholar 

  • Gérard, J. & L. Triest, 2014. The effect of phosphorus reduction and competition on invasive lemnids: life-traits and nutrient uptake. ISRN Botany. doi:10.1155/2014/514294.

    Google Scholar 

  • Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. The Botanical Review 59: 155–186.

    Article  Google Scholar 

  • Grotkopp, E. & M. Rejmanek, 2007. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany 94: 526–532.

    Article  PubMed  Google Scholar 

  • Hernandez, M. E., & W. J. Mitsch, 2004. Deepwater macrophytes and water quality in two experimental constructed wetlands at Olentangy River Wetland Research Park. In Deepwater Vegetation and Water Quality. Ohio State University, Columbus: 45–50.

    Google Scholar 

  • Hillman, W. S., 1961. The Lemnaceae or duckweeds – a review of the descriptive and experimental literature. Botanical Review 27: 221–287.

    CAS  Article  Google Scholar 

  • Hoagland, R. & I. Arnon, 1950. The water-culture method for growing plants without soil. Circular 347: 1–32.

    Google Scholar 

  • Huebert, D. B. & J. M. Shay, 1991. The effect of external phosphorus, nitrogen and calcium on growth of Lemna trisulca. Aquatic Botany 40: 175–183.

    CAS  Article  Google Scholar 

  • Hussner, A. & R. Lösch, 2005. Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, North Rhine Westphalia). Limnologica 35: 18–30.

    Article  Google Scholar 

  • Janes, R. A., J. W. Eaton & K. Hardwick, 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia 340: 23–26.

    Article  Google Scholar 

  • Jessup, C. M., R. Kassen, S. E. Forde, B. Kerr, A. Buckling, P. B. Rainey & B. J. M. Bohannan, 2004. Big questions, small worlds: microbial model systems in ecology. Trends in Ecology and Evolution 19: 189–197.

    Article  PubMed  Google Scholar 

  • Kennedy, N., J. Connolly & N. Clipson, 2005. Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environmental Microbiology 7: 780–788.

    CAS  Article  PubMed  Google Scholar 

  • Lambinon, J., J. E. De Langhe, L. Delvosalle & J. Duvigneaud, 1998. Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden (Pteridofyten en Spermatofyten). National Botanical Garden, Meise.

    Google Scholar 

  • Landolt, E., 1986. The Family of Lemnaceae – A Monographic Study, Vol. 1. Veröff. Geobot. Inst. ETH. Stiftung Rübel, Zürich: 566 pp.

  • Landolt, E. & R. Kandeler, 1987. The Family of Lemnaceae – A Monographic Study, Vol. 2. Veroff. Geobot. Inst. ETH, Stiftung Rubel, Zurich: 638 pp.

  • Lawton, J. H., 1995. Ecological experiments with model systems. Science 269: 328–331.

    CAS  Article  PubMed  Google Scholar 

  • Leng, R. A., 1999. Duckweed – A Tiny Plant with Enormous Potential for Agriculture and Environment. FAO Animal Production and Health Paper, Rome.

  • Matzek, V., 2011. Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions 13: 3005–3014.

    Article  Google Scholar 

  • Mitrovic, S. M., O. Allis, A. Furey & K. J. James, 2005. Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicology and Environmental Safety 61: 345–352.

    CAS  Article  PubMed  Google Scholar 

  • Mkandawire, M. & E. G. Dudel, 2012. Homeostatic regulation of elemental stoichiometry by Lemna gibba L. G3 when nutrient interact with toxic metals. Ecotoxicology 21: 456–464.

    CAS  Article  PubMed  Google Scholar 

  • Muhonen, M., J. Showman & R. Couch, 1983. Nutrient absorption by Spirodela polyrhiza. Journal of Aquatic Plant Management 21: 107–109.

    Google Scholar 

  • Neonakis, G., 2011. The effect of nutrient concentration on duckweed growth. [Available on internet at http://www.studymode.com/essays/The-Effect-Of-Nutrient-Concentration-On-1368620.html.

  • Njambuya, J., I. Stiers & L. Triest, 2011. Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquatic Botany 94: 158–164.

    CAS  Article  Google Scholar 

  • Novak, J. M. & A. S. K. Chan, 2002. Development of P-hyperaccumulator plant strategies to remediate soils with excess P concentrations. Critical Reviews in Plant Sciences 21: 493–509.

    CAS  Article  Google Scholar 

  • Pellant, M., 2003. The Great Basin restoration initiative: challenges and tools to restore a desert landscape in the Western United States. In Allsopp, N., Palmer, A. R., Milton, S. J., Kirkman, K. P., Kerley, G. I. H., Hurt, C. R. & Brown C. J. (eds), Rangelands in the New Millennium, Proceedings of the 7th International Rangeland Congress. Document Transformation Technologies, Pretoria: 1241–1243.

  • Portielje, R. & R. M. M. Roijackers, 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquatic Botany 50: 127–140.

    Article  Google Scholar 

  • Pyšek, P. & D. M. Richardson, 2007. Traits associated with invasiveness in alien plants: where do we stand? In Nentwig, W. (ed), Biological Invasions, Vol. 193. Springer, Berlin: 97–125.

    Chapter  Google Scholar 

  • Radosevich, S. R., J. S. Holt & C. M. Ghersa, 2007. Ecology of Weeds and Invasive Plants, Relationship to Agriculture and Natural Resource Management, 3rd ed. Wiley Interscience, Hoboken.

    Google Scholar 

  • Rees, M., 2013. Competition on productivity gradients – What do we expect? Ecology Letters 16: 291–298.

    Article  PubMed  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    CAS  Article  PubMed  Google Scholar 

  • Sharpley, A. N., T. Daniel, T. Sims, J. Lemunyon, R. Stevens & R. Parry, 2003. Agricultural Phosphorus and Eutrophication, 2nd ed. U.S. Department of Agriculture, Agricultural Research Service, ARS-149: 44 pp.

  • Shome, J. N. & S. K. Neogi, 2001. Hydrophytes in municipal wastewater treatment and limitation. In People and Systems for Water, Sanitation and Health, 2001: 348–350.

  • Skálová, H., V. Jarošík, Ś. Dvořáčková & P. Pyšek, 2013. Effect of intra- and interspecific competition on the performance of native and invasive species of impatiens under varying levels of shade and moisture. PLoS One 8: e62842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skillicorn, P., W. Spira & W. Journey, 2009. Duckweed Aquaculture: A New Aquatic Farming System for Developing Countries. Technical working paper [available on internet at http://www.p2pays.org/ref/09/08875.htm].

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    CAS  Article  PubMed  Google Scholar 

  • Spitters, C. J. T., 1983. An alternative approach to the analyses of mixed cropping experiments. 1. Estimation of competition effects. Netherlands Journal of Agricultural Science 31: 1–11.

    Google Scholar 

  • Stiers, I., J. Njambuya & L. Triest, 2011. Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany 95: 161–166.

    Article  Google Scholar 

  • Suding, K. N., K. D. Lejeune & T. R. Seastedt, 2004. Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141: 526–535.

    Article  PubMed  Google Scholar 

  • Teodorović, I., V. Knežević, T. Tunić, M. Cučak, J. N. Lečić, A. Leovac & I. I. Tumbas, 2012. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine. Environmental Toxicology and Chemistry 31: 417–426.

    Article  PubMed  Google Scholar 

  • Tilman, D., 2000. Causes, consequences and ethics of biodiversity. Nature 405: 208–211.

    CAS  Article  PubMed  Google Scholar 

  • Van, T. K., G. S. Wheeler & T. D. Center, 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquatic Botany 62: 225–233.

    Article  Google Scholar 

  • Wang, Z. Y. & Y. S. Pei, 2012. Ecological risk resulting from invasive species: a lesson from riparian wetland rehabilitation. Procedia Environmental Sciences 13: 1798–1808.

    Article  Google Scholar 

  • Williamson, M., 1999. Invasions. Ecography 22: 5–12.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank J. Gabriel, N. de Bolle, R. De Schutter, T. Sierens, and N. Brion for technical assistance. This PhD research is funded by a Scholarship provided by the Government Agency for Innovation by Science and Technology and by the Vrije Universiteit Brussel (BAS42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Triest.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gérard, J., Triest, L. Competition between invasive Lemna minuta and native L. minor in indoor and field experiments. Hydrobiologia 812, 57–65 (2018). https://doi.org/10.1007/s10750-016-2754-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2754-2

Keywords

  • Alien species
  • Phosphorus
  • RGR
  • Mesocosm
  • Reintroduction