Advertisement

Hydrobiologia

, Volume 812, Issue 1, pp 27–43 | Cite as

Bryophyte communities of Mediterranean Europe: a first approach to model their potential distribution in highly seasonal rivers

  • C. VieiraEmail author
  • F. C. Aguiar
  • A. P. Portela
  • J. Monteiro
  • P. J. Raven
  • N. T. H. Holmes
  • J. Cambra
  • N. Flor-Arnau
  • C. Chauvin
  • S. Loriot
  • T. Feret
  • G. Dörflinger
  • M. Germ
  • U. Kuhar
  • E. Papastergiadou
  • P. Manolaki
  • M. R. Minciardi
  • A. Munné
  • G. Urbanič
  • M. T. Ferreira
PLANTS IN AQUATIC SYSTEMS

Abstract

Mediterranean watercourses are among the most threatened ecosystems worldwide, being increasingly important to understand environmental drivers of biotic assemblages. Our aim was to provide a comprehensive picture of bryophyte communities in Mediterranean rivers and to determine the environmental factors that influence their distribution. We used floristic data collected for inter-calibration purposes under the European Water Framework Directive and River Habitat Survey, from 474 river reaches in six countries of the European Mediterranean basin. We analysed data through classification, ordination and environmental niche modelling techniques, and classified taxa according to biogeographic and aquatic habitat frameworks developed specifically for bryophytes. These analyses revealed four types of communities influenced by spatio-temporal precipitation patterns, altitude and water chemistry factors, most notably calcium and manganese. Community types are compositionally differentiated, although they share some core taxa and show an overall tendency to have several temperate and exclusively aquatic taxa despite the intermittent nature of water flow in highly seasonal Mediterranean rivers. The modelling approach can be improved at a more local scale when more bryological data and higher-resolution environmental information become available. Given future scenarios of climate change and human alteration of hydrological regimes, broader scales studies are needed to monitor shifts in bryophyte communities.

Keywords

Mediterranean bryophytes Microhabitat Environmental variables Aquaticity Biogeography 

Notes

Acknowledgments

We dedicate this article to Nigel Holmes, author and colleague and an authority on river plants and the biggest influence on river conservation and restoration in the UK. By demonstrating the importance of macrophytes as ecological indicators, he transformed the way rivers were assessed both in Britain and across other parts of Europe. He will be sorely missed and fondly remembered by his many colleagues and friends for his inspiration, boundless energy, compassion, kindness, humour and youthful enthusiasm. He was in every sense a colossus who shaped modern-day river management. We thank Dr. Luoma Samrit from the Geological survey of Finland who kindly provided us geochemical data from the Geochemical Atlas of Europe. CV is funded by the Fundação para a Ciência e Tecnologia (FCT) under a Postdoctoral fellowship (SFRH/BPD/63741/2009) co-funded by the Programa Operacional Ciência e Inovação—2010 and Fundo Social Europeu. We are also in debt to the institutions providing financial support, monitoring and environmental data, namely the INAG IP/Agência Portuguesa do Ambiente IP (Portugal), IRSTEA (France), ENEA Saluggia Research Center (Italy), Water Development Department (Cyprus), University of Ljubljana and Ministry of the Environment and Spatial Planning of the Republic of Slovenia (Slovenia), University of Patras and “Karatheodoris” research project (Greece), Catalan Water Agency, Spanish Ministry of Environment and Conferederación Hidrográfica del Ebro (Spain).

Supplementary material

10750_2016_2743_MOESM1_ESM.pdf (62 kb)
Supplementary material 1 (PDF 62 kb)
10750_2016_2743_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 62 kb)
10750_2016_2743_MOESM3_ESM.pdf (127 kb)
Supplementary material 3 (PDF 127 kb)
10750_2016_2743_MOESM4_ESM.pdf (234 kb)
Supplementary material 4 (PDF 233 kb)
10750_2016_2743_MOESM5_ESM.pdf (93 kb)
Supplementary material 5 (PDF 92 kb)
10750_2016_2743_MOESM6_ESM.pdf (98 kb)
Supplementary material 6 (PDF 98 kb)
10750_2016_2743_MOESM7_ESM.pdf (97 kb)
Supplementary material 7 (PDF 97 kb)

References

  1. Aguiar, F. C., M. T. Ferreira, A. Albuquerque & I. Moreira, 2007. Alien and endemic flora at reference and non-reference sites in Mediterranean-type streams in Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 335–347.CrossRefGoogle Scholar
  2. Aguiar, F., M. T. Ferreira & P. Rodriguez-González, 2008. Tipologia ripícola de sistemas fluviais portugueses. Tecnologia da Água 3: 30–38.Google Scholar
  3. Aguiar, F., P. Segurado, G. Urbanič, J. Cambra, C. Chauvin, S. Ciadamidaro, G. Dörflinger, J. Ferreira, M. Germ & P. Manolaki, 2014. Comparability of river quality assessment using macrophytes: a multi-step procedure to overcome biogeographical differences. Science of The Total Environment 476: 757–767.CrossRefPubMedGoogle Scholar
  4. Barbet-Massin, M., F. Jiguet, C. H. Albert & W. Thuiller, 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338.CrossRefGoogle Scholar
  5. Birk, S., N. Willby, C. Chauvin, H. C. Coops, L. Denys, D. Galoux, A. Kolada, K. Pall, I. Pardo, R. Pot & D. Stelzer, 2007. Report on the central Baltic river GIG macrophyte intercalibration exercise. Report of the European Commission, JRC. 82 pp.Google Scholar
  6. Bischler, H., 2004. Liverworts of the Mediterranean. J. Cramer.Google Scholar
  7. Blondel, J., J. Aronson, J.-Y. Bodiou & G. Boeuf, 2010. The Mediterranean Region. Biological Diversity in Space and Time. Oxford University, Oxford.Google Scholar
  8. Blumler, M. A., 2005. Three conflated definitions of mediterranean climates. Middle States Geographer 38: 52–60.Google Scholar
  9. Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.CrossRefGoogle Scholar
  10. Bonada, N., M. Rieradevall, N. Prat & V. H. Resh, 2006. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. Journal of the North American Benthological Society 25: 32–43.CrossRefGoogle Scholar
  11. Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.CrossRefGoogle Scholar
  12. Bonada, N., M. Rieradevall, H. Dallas, J. Davis, J. Day, R. Figueroa, V. H. Resh & N. Prat, 2008. Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology 53: 772–788.CrossRefGoogle Scholar
  13. Bruno, D., O. Belmar, D. Sanchez-Fernandez, S. Guareschi, A. Millan & J. Velasco, 2014. Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecological Indicators 45: 456–464.CrossRefGoogle Scholar
  14. Caines, L. A., A. W. Watt & D. E. Wells, 1985. The uptake and release of some trace metals by aquatic bryophytes in acidified waters in Scotland. Environmental Pollution Series B: Chemical and Physical 10: 1–18.CrossRefGoogle Scholar
  15. Cesa, M., 2010. The use of aquatic mosses and spectrophotometry to monitor trace element pollution in Italy. Spectroscopy Europe 22: 6–8.Google Scholar
  16. Cesa, M., A. Bizzotto, C. Ferraro, F. Fumagalli & P. L. Nimis, 2009. Palladio, an index of trace element alteration for the River Bacchiglione Based on Rhynchostegium riparioides Moss Bags. Water Air and Soil Pollution 208: 59–77.CrossRefGoogle Scholar
  17. Cesa, M., A. Baldisseri, G. Bertolini, E. Dainese, M. D. Col, U. D. Vecchia, P. Marchesini & P. L. Nimis, 2013. Implementation of an active ‘bryomonitoring’ network for chemical status and temporal trend assessment under the Water Framework Directive in the Chiampo Valley’s tannery district (NE Italy). Journal of Environmental Management 114: 303–315.CrossRefPubMedGoogle Scholar
  18. Ceschin, S., M. Aleffi, S. Bisceglie, V. Savo & V. Zuccarello, 2012. Aquatic bryophytes as ecological indicators of the water quality status in the Tiber River basin (Italy). Ecological Indicators 14: 74–81.CrossRefGoogle Scholar
  19. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  20. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  21. Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Boehm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.CrossRefPubMedGoogle Scholar
  22. Comité Européen de Normalisation, 2014. Water quality-guidance for the surveying of aquatic macrophytes in running waters.Google Scholar
  23. Cooper, S. D., P. S. Lake, S. Sabater, J. M. Melack & J. L. Sabo, 2013. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719: 383–425.CrossRefGoogle Scholar
  24. Cowling, R. M., P. W. Rundel, B. B. Lamont, M. Kalin Arroyo & M. Arianoutsou, 1996. Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution 11: 362–366.CrossRefGoogle Scholar
  25. Cruz de Carvalho, R., C. Branquinho & J. Marques da Silva, 2011. Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234: 195–205.CrossRefGoogle Scholar
  26. Cuttelod, A., N. García, D. A. Malak, H. J. Temple & V. Katariya, 2009. The Mediterranean: a biodiversity hotspot under threat. In Vié, J.-C., C. Hilton-Taylor & S. N. Stuart (eds), The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland, Switzerland.Google Scholar
  27. Dallas, H. F., 2013. Ecological status assessment in mediterranean rivers: complexities and challenges in developing tools for assessing ecological status and defining reference conditions. Hydrobiologia 719: 483–507.CrossRefGoogle Scholar
  28. Davies, P. & B. Stewart, 2013. Aquatic biodiversity in the Mediterranean climate rivers of southwestern Australia. Hydrobiologia 719: 215–235.CrossRefGoogle Scholar
  29. Dierssen, K., 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung.Google Scholar
  30. Dodkins, I., F. Aguiar, R. Rivaes, A. Albuquerque, P. Rodríguez-González & M. T. Ferreira, 2012a. Measuring ecological change of aquatic macrophytes in Mediterranean rivers. Limnologica Ecology and Management of Inland Waters 42: 95–107.CrossRefGoogle Scholar
  31. Dodkins, I. R., F. Aguiar & M. T. Ferreira, 2012b. Can Mediterranean river plants translate into quality assessment systems? Venturing into unexplored territories. In Boon, P. & P. Raven (eds), River Conservation and Management. Wiley, Chichester: 135–142.Google Scholar
  32. Düll, R., 1983. Distribution of European and Macaronesian liverworts (Hepaticophytina). Bryologische Beitraege 2: 1–115.Google Scholar
  33. Düll, R., 1985. Distribution of European and Macaronesian mosses (Bryophytina). Bryologische Beitraege 5: 110–232.Google Scholar
  34. ESRI, 2012. ArcMap 10.1. Environmental Systems Research Institute Inc., Redlands.Google Scholar
  35. Feio, M. J., F. C. Aguiar, S. F. P. Almeida, J. Ferreira, M. T. Ferreira, C. Elias, S. R. Q. Serra, A. Buffagni, J. Cambra, C. Chauvin, F. Delmas, G. Dörflinger, S. Erba, N. Flor, M. Ferréol, M. Germ, L. Mancini, P. Manolaki, S. Marcheggiani, M. R. Minciardi, A. Munné, E. Papastergiadou, N. Prat, C. Puccinelli, J. Rosebery, S. Sabater, S. Ciadamidaro, E. Tornés, I. Tziortzis, G. Urbanič & C. Vieira, 2014. Least disturbed condition for European Mediterranean rivers. Science of The Total Environment 476–477: 745–756.CrossRefPubMedGoogle Scholar
  36. Ferreira, M. T. & F. C. Aguiar, 2006. Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica 25: 411–424.Google Scholar
  37. Ferrier, S. & A. Guisan, 2006. Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43: 393–404.CrossRefGoogle Scholar
  38. Ferrier, S., M. Drielsma, G. Manion & G. Watson, 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodiversity and Conservation 11: 2309–2338.CrossRefGoogle Scholar
  39. Franklin, J., 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge.Google Scholar
  40. Gabriel, R. & J. W. Bates, 2005. Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecology 177: 125–144.CrossRefGoogle Scholar
  41. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic Influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  42. Gecheva, G. & L. Yurukova, 2013. Water pollutant monitoring with aquatic bryophytes: a review. Environmental Chemistry Letters 12: 49–61.CrossRefGoogle Scholar
  43. Gecheva, G., L. Yurukova, S. Cheshmedjiev & A. Ganeva, 2010. Distribution and bioindication role of aquatic bryophytes in Bulgarian rivers. Biotechnology & Biotechnological Equipment 24: 164–170.CrossRefGoogle Scholar
  44. Gecheva, G., L. Yurukova & A. Ganeva, 2011. Assessment of pollution with aquatic bryophytes in Maritsa River (Bulgaria). Bulletin of Environmental Contamination and Toxicology 87: 480–485.CrossRefPubMedGoogle Scholar
  45. Gil, J. A. & P. Ruiz, 1985. The aquatic basophilous bryophytic communities of South East Spain. Herzogia 7: 211–228.Google Scholar
  46. Glime, J. M., 1971. Response of two species of Fontinalis to field isolation from stream water. The Bryologist 74: 383–386.CrossRefGoogle Scholar
  47. Glime, J. M. & D. H. Vitt, 1984. The physiological adaptations of aquatic Musci. Lindbergia 10: 41–52.Google Scholar
  48. Henderson, P. A. & R. M. H. Seaby, 2006. Species Diversity and Richness v4. Pisces Conservation Ltd., Pennington.Google Scholar
  49. Hershkovitz, Y. & A. Gasith, 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 719: 59–75.CrossRefGoogle Scholar
  50. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  51. Hill, M. O., 1979. TWINSPAN: a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University.Google Scholar
  52. Hill, M. O., N. Bell, M. A. Bruggeman-Nannenga, M. Brugués, M. J. Cano, J. Enroth, K. I. Flatberg, J. P. Frahm, M. T. Gallego, R. Garilleti, J. Guerra, L. Hedenäs, D. T. Holyoak, M. S. Ignatov, F. Lara, V. Mazimpaka, J. Muñoz & L. Söderström, 2006. An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology 28: 198–267.CrossRefGoogle Scholar
  53. Holmes, N., 2010. The development and application of the Mean Trophic Rank (MTR). In Hurford, C., M. Schneider & I. Cowx (eds), Conservation Monitoring in Freshwater Habitats: A Practical Guide and Case Studies. Springer, London: 115–124.CrossRefGoogle Scholar
  54. Hooke, J. M., 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79: 311–335.CrossRefGoogle Scholar
  55. Hughes, S. J., J. M. Santos, M. T. Ferreira, R. Caraça & A. M. Mendes, 2009. Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshwater Biology 54: 2383–2400.CrossRefGoogle Scholar
  56. Kyrkjeeide, M. O., H. K. Stenøien, K. I. Flatberg & K. Hassel, 2014. Glacial refugia and post-glacial colonization patterns in European bryophytes. Lindbergia 37: 47–59.CrossRefGoogle Scholar
  57. Liu, C., P. M. Berry, T. P. Dawson & R. G. Pearson, 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.CrossRefGoogle Scholar
  58. Luís, L., S. J. Hughes & M. Sim-Sim, 2013. Bryofloristic evaluation of the ecological status of Madeiran streams: towards the implementation of the European Water Framework Directive in Macaronesia. Nova Hedwigia 96: 181–204.CrossRefGoogle Scholar
  59. Magalhães, M. F., D. C. Batalha & M. J. Collares-Pereira, 2002. Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology 47: 1015–1031.CrossRefGoogle Scholar
  60. Magalhães, M. F., P. Beja, I. J. Schlosser & M. J. Collares-Pereira, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshwater Biology 52: 1494–1510.CrossRefGoogle Scholar
  61. Manel, S., H. C. Williams & S. J. Ormerod, 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.CrossRefGoogle Scholar
  62. Manolaki, P. & E. Papastergiadou, 2013. The impact of environmental factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquatic Botany 104: 34–46.CrossRefGoogle Scholar
  63. Manolaki, P. & E. Papastergiadou, 2015. Environmental Factors Influencing Macrophytes Assemblages in a Middle‐Sized Mediterranean Stream. River Research and Applications.Google Scholar
  64. Manolaki, P., E. Tsakiri & E. Papastergiadou, 2011. Inventory of aquatic and riparian flora of Acheron and Louros rivers, and Zirou lake in Western Greece. Fresenius Environmental Bulletin 20: 861–874.Google Scholar
  65. Markovic, D., S. Carrizo, J. Freyhof, N. Cid, S. Lengyel, M. Scholz, H. Kasperdius & W. Darwall, 2014. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Diversity and Distributions 20: 1097–1107.CrossRefGoogle Scholar
  66. Marstaller, R., 1987. Die Moosgesellschaften der Klasse Platyhypnidio-Fontinalietea antipyreticae Philippi 1956. Phytocoenologia 15: 85–138.CrossRefGoogle Scholar
  67. Metzger, M. J., R. G. H. Bunce, R. H. G. Jongman, C. A. Mücher & J. W. Watkins, 2005. A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549–563.CrossRefGoogle Scholar
  68. Meybeck, M., E. Kuusisto, A. Mäkelä & E. Mälkki, 1996. Water quality. In Bartram, J. & R. Balance (eds), Water Quality Monitoring e a Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. UNEP/WHO, London: 15–36.Google Scholar
  69. Munné, A. & N. Prat, 2011. Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecological Indicators 11: 651–662.CrossRefGoogle Scholar
  70. Muotka, T. & R. Virtanen, 1995. The stream as a habitat templet for bryophytes: species’ distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biology 33: 141–160.CrossRefGoogle Scholar
  71. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.CrossRefPubMedGoogle Scholar
  72. Papastergiadou, E., K. Stefanidis, G. Dorflinger, E. Giannouris, K. Kostara & P. Manolaki, 2014. Exploring biodiversity in riparian corridors of a Mediterranean island: plant communities and environmental parameters in Cyprus rivers. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 150: 1–13.Google Scholar
  73. Papp, B. & M. Rajcazy, 1998. Investigations on the condition of bryophyte vegetation of mountain streams in Hungary. Journal of the Hattori Botanical Laboratory 84: 81–99.Google Scholar
  74. Papp, B., A. Ganeva & R. Natcheva, 2006. Bryophyte vegetation of Iskur River and its main tributaries. Phytologia Balcanica 12: 181–189.Google Scholar
  75. Prenda, J., M. Clavero, F. Blanco-Garrido & V. Hermoso, 2006. Threats to the conservation of biotic integrity in Iberian fluvial ecosystems. Limnetica 25: 377–388.Google Scholar
  76. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  77. Raven, P. J., N. T. H. Holmes, F. H. Dawson & D. Withrington, 2005. River Habitat Survey in Slovenia. Results from 2005. Environment Agency, Bristol: 28 pp.Google Scholar
  78. Raven, P. J., N. T. H. Holmes & F. H. Dawson, 2007a. River Habitat Survey in the Ardèches and Cévennes areas of South-eastern France. Results from 2007. Environment Agency, Bristol: 25 pp.Google Scholar
  79. Raven, P. J., N. T. H. Holmes, F. H. Dawson, W. Binder & H. Mühlmann, 2007b. River Habitat Survey in Southern Bavaria and the Tyrolean Alps. Results from 2006. Environment Agency, Bristol: 24 pp.Google Scholar
  80. Raven, P. J., N. T. H. Holmes, P. Scarlett, M. Furse & J. B. Ortiz, 2009a. River Habitat Survey in the Picos de Europa, Northern Spain. Results from 2008. Environment Agency, Bristol: 33 pp.Google Scholar
  81. Raven, P. J., N. T. H. Holmes, J. Pádua, J. Ferreira, S. Hughes, L. Baker, L. Taylor & K. Seager, 2009b. River Habitat Survey in Southern Portugal. Results from 2009. Environment Agency, Bristol: 30.Google Scholar
  82. Ros, R., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T. Blockeel, M. Brugués, M. Cano, R. Cros, M. Dia & G. Dirkse, 2007. Hepatics and Anthocerotes of the Mediterranean, an annotated checklist. Cryptogamie Bryologie 28: 351.Google Scholar
  83. Ros, R. M., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T. L. Blockeel, M. Brugués, R. M. Cros, M. G. Dia, G. M. Dirkse, I. Draper, W. El-Saadawi, A. Erdağ, A. Ganeva, R. Gabriel, J. M. González-Mancebo, C. Granger, I. Herrnstadt, V. Hugonnot, K. Khalil, H. Kürschner, A. Losada-Lima, L. Luís, S. Mifsud, M. Privitera, M. Puglisi, M. Sabovljević, C. Sérgio, H. M. Shabbara, M. Sim-Sim, A. Sotiaux, R. Tacchi, A. Vanderpoorten & O. Werner, 2013. Mosses of the Mediterranean, an annotated checklist. Cryptogamie Bryologie 34: 99–283.CrossRefGoogle Scholar
  84. Salminen, R., J. Plant & S. Reeder, 2005. Geochemical atlas of Europe. Part 1, Background information, methodology and maps. Geological Survey of Finland Espoo.Google Scholar
  85. Sánchez-Montoya, M. D. M., T. PuntÍ, M. L. Suárez, M. D. R. Vidal-Abarca, M. Rieradevall, J. M. Poquet, C. Zamora-Muñoz, S. Robles, M. Álvarez, J. Alba-Tercedor, M. Toro, A. M. Pujante, A. Munné & N. Prat, 2007. Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology 52: 2240–2255.CrossRefGoogle Scholar
  86. Scarlett, P. & M. O’Hare, 2006. Community structure of in-stream bryophytes in English and Welsh rivers. Hydrobiologia 553: 143–152.CrossRefGoogle Scholar
  87. Sérgio, C. & D. Draper, 2001. Bryophyte survey as a basis for the validity of the Mediterranean isoclimatic areas in Portugal. Bocconea 13: 89–99.Google Scholar
  88. Sérgio, C., R. Figueira & A. M. V. Crespo, 2000. Observations of heavy metal accumulation in the cell walls of Fontinalis antipyretica, in a Portuguese stream affected by mine effluent. Journal of Bryology 22: 251–255.CrossRefGoogle Scholar
  89. Staniszewski, R., K. Szoszkiewicz, J. Zbierska, J. Lesny, S. Jusik & R. T. Clarke, 2006. Assessment of sources of uncertainty in macrophyte surveys and the consequences for river classification. Hydrobiologia 566: 235–246.CrossRefGoogle Scholar
  90. Stella, J. C., P. M. Rodríguez-González, S. Dufour & J. Bendix, 2013. Riparian vegetation research in Mediterranean-climate regions: common patterns, ecological processes, and considerations for management. Hydrobiologia 719: 291–315.CrossRefGoogle Scholar
  91. Suren, A. M., 1996. Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in South Island, New Zealand streams. New Zealand Journal of Marine and Freshwater Research 30: 501–523.CrossRefGoogle Scholar
  92. Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.CrossRefPubMedGoogle Scholar
  93. Szoszkiewicz, K., T. Ferreira, T. Korte, A. Baattrup-Pedersen, J. Davy-Bowker & M. O’Hare, 2006. European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566: 211–234.CrossRefGoogle Scholar
  94. ter Braak, C. J., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  95. ter Braak, C. F. & P. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.CrossRefGoogle Scholar
  96. ter Braak, C. & P. Smilauer, 2012. Canoco Reference Manual and User’s Guide: Software for Ordination. Microcomputer Power, Ithaca.Google Scholar
  97. Thuiller, W., D. Georges & R. Engler, 2013. Biomod2: ensemble platform for species distribution modeling. R package version 3:1–25.Google Scholar
  98. Tierno de Figueroa, J. M., M. López-Rodríguez, S. Fenoglio, P. Sánchez-Castillo & R. Fochetti, 2013. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719: 137–186.CrossRefGoogle Scholar
  99. Urbanič, G., 2009. Inland aquatic bioregions of Mediterranean climate region of Slovenia; biodiversity and possible climate change impacts. Review of Hydrobiology 2: 107–116.Google Scholar
  100. Vanderpoorten, A. & J. P. Klein, 1999. Variations of the aquatic bryophyte assemblages in the Rhine Rift related to water quality. 1. The waterfalls of the Vosges and the Black Forest. Journal of Bryology 21: 109–115.CrossRefGoogle Scholar
  101. Vieira, C., A. Séneca, M. T. Ferreira & C. Sérgio, 2012a. The use of bryophytes for fluvial assessment of mountain streams in Portugal. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley, Chichester: 143–157.CrossRefGoogle Scholar
  102. Vieira, C., A. Séneca, C. Sérgio & M. T. Ferreira, 2012b. Bryophyte taxonomic and functional groups as indicators of fine scale ecological gradients in mountain streams. Ecological Indicators 18: 98–107.CrossRefGoogle Scholar
  103. Vieira, C., F. C. Aguiar & M. Ferreira, 2014. The relevance of bryophytes in the macrophyte-based reference conditions in Portuguese rivers. Hydrobiologia 737: 245–264.CrossRefGoogle Scholar
  104. Vitt, D. H. & J. M. Glime, 1984. The structural adaptations of aquatic Musci. Lindbergia 10: 95–110.Google Scholar
  105. Zechmeister, H. G. & L. Mucina, 1994. Vegetation of European springs: high-rank syntaxa of the Montio-Cardaminetea. Journal of Vegetation Science 5: 385–402.CrossRefGoogle Scholar
  106. Zechmeister, H. G., K. Grodzinska & S. Szarek-Lukazewska, 2012. Bioindicators in use: Bryophytes. In Markert, B. A., A. M. Breure & H. G. Zechmeister (eds), Bioindicators and Biomonitors: Principles, Concepts and Applications. Elsevier, Amsterdam: 329–375.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • C. Vieira
    • 1
    • 3
    Email author
  • F. C. Aguiar
    • 2
    • 3
  • A. P. Portela
    • 1
  • J. Monteiro
    • 1
  • P. J. Raven
    • 4
  • N. T. H. Holmes
    • 5
  • J. Cambra
    • 6
  • N. Flor-Arnau
    • 6
  • C. Chauvin
    • 7
  • S. Loriot
    • 7
  • T. Feret
    • 7
  • G. Dörflinger
    • 8
  • M. Germ
    • 9
  • U. Kuhar
    • 9
  • E. Papastergiadou
    • 10
  • P. Manolaki
    • 10
    • 11
  • M. R. Minciardi
    • 12
  • A. Munné
    • 13
  • G. Urbanič
    • 14
  • M. T. Ferreira
    • 3
  1. 1.CIBIO/InBIO, Research Centre in Biodiversity and Genetic ResourcesUniversity of PortoOportoPortugal
  2. 2.Faculty of Sciences, Centre for Ecology, Evolution and Environmental ChangesUniversity of LisbonLisbonPortugal
  3. 3.School of Agriculture, Forest Research CentreUniversity of LisbonLisbonPortugal
  4. 4.Freshwater Biological AssociationCumbriaUK
  5. 5.Alconbury Environmental ConsultantsHuntingdonUK
  6. 6.University of BarcelonaBarcelonaSpain
  7. 7.IRSTEABordeauxFrance
  8. 8.Water Development Department, Ministry of AgricultureNatural Resources and EnvironmentLefkosiaCyprus
  9. 9.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  10. 10.University of PatrasPatrasGreece
  11. 11.Open University of CyprusLatsiaCyprus
  12. 12.Saluggia Research CentreENEAVerolengoItaly
  13. 13.Catalan Water AgencyBarcelonaSpain
  14. 14.Institute for Water of the Republic of SloveniaLjubljanaSlovenia

Personalised recommendations