, Volume 775, Issue 1, pp 213–230 | Cite as

Consumption of the invasive New Zealand mud snail (Potamopyrgus antipodarum) by benthivorous predators in temperate lakes: a case study from Lithuania

  • Vytautas Rakauskas
  • Rokas Butkus
  • Evelina Merkytė
Primary Research Paper


Introduced species interact both directly and indirectly with native species. Of particular interest from the fisheries management point of view is how the invasive New Zealand mud snail, Potamopyrgus antipodarum, can alter the diet of fish and crayfish. If the snail is somewhat resistant to predation, it cannot be easily included into predators’ diet. We examine the direct interactions between the introduced P. antipodarum and benthivorous predators local to temperate lakes through laboratory experiments and field surveys. Field survey showed that P.antipodarum dominated in the macroinvertebrate communities of the studied lakes. Feeding experiments indicated low consumption of P.antipodarum by most of its potential predators. Field diet survey showed that the main fish species did not significantly consume P.antipodarum. Moreover, it was ascertained that this snail can survive passing through the gastrointestinal tract of most studied fish species. Consequently, as local fish do not consume P. antipodarum, a part of lake primary production becomes locked in lower trophic levels. Therefore, there is a legitimate concern that the invasion of this snail may reduce the direct flow of primary production towards higher trophic levels in temperate lakes.


Aquatic invasion Enemy release hypothesis Benthivorous fish Gastrointestinal transit Fish diet composition 


  1. Aarnio, K. & E. Bonsdorff, 1997. Passing the gut of juvenile flounder, Platichthys flesus (l.) – differential survival of zoobenthic prey species. Marine Biology 129: 11–14.CrossRefGoogle Scholar
  2. Aberle, N., H. Hillebrand, J. Grey & K. H. Wiltshire, 2005. Selectivity and competitive interactions between two benthic invertebrate grazers (Asellus aquaticus and Potamopyrgus antipodarum): an experimental study using 13C- and 15 N-labelled diatoms. Freshwater Biology 50: 369–379.CrossRefGoogle Scholar
  3. Alonso, A. & P. Castro-Diez, 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614: 107–116.CrossRefGoogle Scholar
  4. Anonymous, 2010. Nemuno upių baseinų rajono valdymo planas. [Management plan of rivers in the district of the Nemunas River basin]. Aplinkos apsaugos agentūra, Vilnius (in Lithuanian).Google Scholar
  5. Anonymous, 2015. Ežerų ir tvenkinių būklė. 2015 valstybinių ežerų monitoring duomenys. [The conditions of lakes and ponds. 2015 monitoring data of state lakes]. Aplinkos apsaugos agentūra, Vilnius (in Lithuanian) [available from http://vanduo.gamta.lt/cms/]. Accessed on 03 June 2015.
  6. Araujo, R., D. Moreno & M. A. Ramos, 1993. The Asiatic clam Corbicula fluminea (Muller, 1774) (Bivalvia: Corbiculidae) in Europe. American Malacological Bulletin 10: 39–49.Google Scholar
  7. Arbačiauskas, K., G. Višinskienė, S. Smilgevičienė & V. Rakauskas, 2011. Non-indigenous macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and future. Knowledge and Management of Aquatic Ecosystems 402: 1–18.Google Scholar
  8. Azour, F., 2011. Fødebiologi hos den sortmundede kutling Neogobius melanostomus i danske farvande. [Feeding ecology of the round goby Neogobius melanostomus in Danish waters]. BSc Thesis, University of Copenhagen (In Danish) [available from http://fiskeatlas.ku.dk/billeder/Sortmundet_kutlings_f_debiologi_i_DK.pdf]. Accessed on 03 June 2015.
  9. Barton, D. R., R. A. Johnson, L. Campbell, J. Petruniak & M. Patterson, 2005. Effects of round gobies (Neogobius melanostomus) on dreissenid mussels and other invertebrates in eastern Lake Erie, 2002–2004. Journal of Great Lakes Research 31: 252–261.CrossRefGoogle Scholar
  10. Bennett, D. M., T. L. Dudley, S. D. Cooper & S. S. Sweet, 2015. Ecology of the invasive New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae), in a mediterranean-climate stream system. Hydrobiologia 746: 375–399.CrossRefGoogle Scholar
  11. Bersine, K., V. E. F. Brenneis, R. C. Draheim, A. M. W. Rub, J. E. Zamon, R. K. Litton, S. A. Hinton, M. D. Sytsma, J. R. Cordell & J. W. Chapman, 2008. Distribution of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) in the Columbia River Estuary and its first recorded occurrence in the diet of juvenile Chinook salmon (Oncorhynchus tshawytscha). Biological Invasions 10: 1381–1388.CrossRefGoogle Scholar
  12. Bondesen, P. & E. W. Kaiser, 1949. Hydrobia (Potamopyrgus) jenkinsi (Smith) in Denmark illustrated by its ecology. Oikos 1: 252–281.CrossRefGoogle Scholar
  13. Bowler, P. A., 1991. The rapid spread of the freshwater hydrobiid snail Potamopyrgus antipodarum (Gray) in the middle Snake River, Southern Idaho. Proceedings of the Desert Fishes Council 21: 173–182.Google Scholar
  14. Brenneis, V. E. F., A. Sih & C. E. de Rivera, 2011. Integration of an invasive consumer into an estuarine food web: direct and indirect effects of the New Zealand mud snail. Oecologia 167: 169–179.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Broekhuizen, N., S. Parkyn & D. Miller, 2001. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457: 125–132.CrossRefGoogle Scholar
  16. Bruce, R. L. & C. M. Moffitt, 2009. Survival and passage of ingested New Zealand Mudsnails through the intestinal tract of rainbow trout. North American Journal of Aquaculture 71: 287–301.CrossRefGoogle Scholar
  17. Burla, H. & G. Ribi, 1998. Density variation of the zebra mussel Dreissena polymorpha in Lake Zürich, from 1976 to 1988. Aquatic Sciences 60: 145–156.Google Scholar
  18. Butkus, R., E. Šidagytė & K. Arbačiauskas, 2012. Two morphotypes of the New Zealand mud snail Potamopyrgus antipodarum (J. E. Gray, 1843) (Mollusca: Hydrobiidae) invade Lithuanian lakes. Aquatic Invasions 7: 211–218.CrossRefGoogle Scholar
  19. Butkus, R., E. Šidagytė, V. Rakauskas & K. Arbačiauskas, 2014. Distribution and current status of non-indigenous mollusc species in Lithuanian inland waters. Aquatic Invasions 9: 95–103.CrossRefGoogle Scholar
  20. Cada, C., 2004. Interactions between the invasive New Zealand mudsnail, Potamopyrgus antipodarum, mayflies, and fish predators. MS thesis. Montana State University, Bozeman.Google Scholar
  21. Carlsson, N. O. L., H. Bustamante, D. L. Strayer & M. L. Pace, 2011. Biotic resistance on the increase: native predators structure invasive zebra mussel populations. Freshwater Biology 56: 1630–1637.CrossRefGoogle Scholar
  22. Carlsson, N. O. L., O. Sarnelle & D. L. Strayer, 2009. Native predators and exotic prey – an acquired taste? Frontiers in Ecology and the Environment 7: 525–532.CrossRefGoogle Scholar
  23. Cianfanelli, S., E. Lori & M. Bodon, 2007. Alien freshwater molluscs in Italy and their distribution. In Gherardi, F. (ed.), Biological invaders in inland waters: profiles, distribution, and threats. Springer, Dordrecht: 103–121.CrossRefGoogle Scholar
  24. Collado, G. A., 2014. Out of New Zealand: molecular identification of the highly invasive freshwater mollusc Potamopyrgus antipodarum (Gray, 1843) in South America. Zoological Studies 53: 70.CrossRefGoogle Scholar
  25. Crawley, M. J., 1997. Plant Ecology. Blackwell Science, Oxford.Google Scholar
  26. Death, R. G., 1991. Environmental stability: its effects on stream benthic communities. Dissertation, University of Canterbury, Christchurch, New Zealand.Google Scholar
  27. Dorgelo, J., 1987. Density fluctuations in populations (1982–1986) and biological observations of Potamopyrgus jenkinsi in two trophically differing lakes. Hydrobiological Bulletin 21: 95–110.CrossRefGoogle Scholar
  28. Evans, M. A., 2012. Impacts of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) as leaf litter decomposers. Dissertation, University of California, Davis.Google Scholar
  29. Filippenko, D. P. & M. Son, 2008. The New Zealand mud snail Potamopyrgus antipodarum (Gray, 1843) is colonising the artificial lakes of Kaliningrad City, Russia (Baltic Sea Coast). Aquatic Invasions 3: 345–347.CrossRefGoogle Scholar
  30. Gasiūnas, I., 1959. Kormovoj zoomakrobentos zaliva Kurshju mares [The fodder macrozoobenthos of the Curonian Lagoon]. In: Jankevičius K (ed), Kurshju mares. Itogi kompleksnogo issledovanija [The Curonian Lagoon. Results of integrated research]. Institute of Biology, Vilnius, Lithuania: 191–291 (In Russian).Google Scholar
  31. Gasiunas, I., 1963. Akklimatizacija kormovykh rakoobraznykh (Kaspijskogo reliktovogo tipa) v vodokhranilische Kaunasskoj GES i vozmozhnosti ikh pereselenija v drugie vodojemy Litvy [The acclimatization of fodder crustaceans (of the Caspian relict type) into the reservoir of Kaunas Hydroelectric power station and the possibility of their transference into other water bodies]. LTSR MA Darbai, Serija C 1: 79–85. (in Russian).Google Scholar
  32. Gasiunas, I., 1965. O rezultatakh akklimatizacii kormovykh bespozvonochnykh Kaspijskogo kompleksa v vodoemakh Litvy [On the results of the acclimatization of food invertebrates of the Caspian complex in Lithuanian water bodies]. Zoologicheskij Zhurnal 44: 340–343. (in Russian).Google Scholar
  33. Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012. Habitat use by fishes of Lake Superior. I. Diel patterns of habitat use in nearshore and offshore waters of the Apostle Islands region. Aquatic Ecosystem Health & Management 15: 332–353.Google Scholar
  34. Grabowska, J., M. Grabowski, D. Pietraszewski & J. Gmur, 2009. Non-selective predator – the versatile diet of Amur sleeper (Perccottus glenii Dybowski, 1877) in the Vistula River (Poland), a newly invaded ecosystem. Journal of Applied Ichthyology 25: 451–459.CrossRefGoogle Scholar
  35. Grigorovich, I. A., A. V. Korniushhin, D. K. Gray, I. C. Duggan, R. I. Colautti & H. J. MacIsaac, 2003. Lake Superior: an invasion coldspot? Hydrobiologia 499: 191–210.CrossRefGoogle Scholar
  36. Gumuliauskaitė, S., 2007. Ponto-Kaspijos šoniplaukos Pontogammarus robustoides gyvenimo ciklas ir poveikiai Lietuvos gėlų vandenų bendrijoms. [Life cycle and impacts of Ponto-Caspian amphipods on the Lithuanian freshwater ecosystems]. Dissertation, Vilnius University, Vilnius Lithuania (in Lithuanian).Google Scholar
  37. Hall, R. O., J. L. Tank & M. F. Dybdahl, 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1: 408–411.CrossRefGoogle Scholar
  38. Hall, R. O., M. F. Dybdahl & M. C. Vanderloop, 2006. Extremely high secondary production of introduced snails in rivers. Ecological Applications 16: 1121–1131.CrossRefPubMedGoogle Scholar
  39. Hanson, P. C., T. B. Johnson, D. E. Schindler & J. F. Kitchell, 1997. Fish bioenergetics 3.0. Wisc. Sea Grant Inst.Google Scholar
  40. Haynes, A. & B. J. R. Taylor, 1984. Food finding and food preference in Potamopyrgus jenkinsi (E. A. Smith) (Gastropoda: Prosobranchia). Archiv für Hydrobiologie 100: 479–491.Google Scholar
  41. Haynes, A., B. R. Taylor & M. E. Varley, 1985. The influence of mobility of Potamopyrgus jenkinsi (Smith, E.A.) (Prosobranchia: Hydrobiidae) on its spread. Archiv für Hydrobiologie 103: 497–508.Google Scholar
  42. Hjelm, J., L. Persson & B. Christensen, 2000. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 122: 190–199.CrossRefGoogle Scholar
  43. Horppila, J., J. Ruuhijärvi, M. Rask, C. Karppinen, K. Nyberg & M. Olin, 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. Journal of Fish Biology 56: 51–72.CrossRefGoogle Scholar
  44. Ivlev, V., 1955. Eksperimentalnaja ekologija pitanija ryb. [Experimental ecology of fish feeding]. Pischepromizdat, Moscva (in Russia).Google Scholar
  45. James, M. R., I. Hawes & M. Weatherhead, 2000. Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biology 44: 311–326.CrossRefGoogle Scholar
  46. Järvalt, A., T. Krause & A. Palm, 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203.CrossRefGoogle Scholar
  47. Jellyman, D. J., 1989. Diet of two species of freshwater eel (Anguilla spp.) in Lake Pounui, New Zealand. New Zealand Journal of Marine and Freshwater Research 23: 1–10.CrossRefGoogle Scholar
  48. Kappes, H. & P. Haase, 2011. Slow, but steady: dispersal of freshwater molluscs. Aquatic Sciences 74: 1–14.CrossRefGoogle Scholar
  49. Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164–169.CrossRefGoogle Scholar
  50. Kelley, A. L., 2006. Food Web Impacts of the Invasive New Zealand Mudsnail in an Estuarine System. Portland State University McNair Scholars Online Journal 2: 162–174.CrossRefGoogle Scholar
  51. Kerans, B. L., M. E. Dybdahl, M. M. Gangloff & L. E. Jannot, 2005. Potamopyrgus antipodarum: distribution, density, and effects on native macroinvertebrate assemblages in the Greater Yellowstone ecosystem. Journal of the North American Benthological Society 24: 123–138.CrossRefGoogle Scholar
  52. Kerans, B. L., C. A. Cada & J. Zickovich, 2010. Asymmetrical behavioral interactions between the New Zealand mud snail, Potamopyrgus antipodarum, and scraping, collector-gathering and collector-filtering macroinvertebrates. Journal of Freshwater Ecology 25: 657–666.CrossRefGoogle Scholar
  53. King, R. B., J. M. Ray & K. M. Stanford, 2006. Gorging on gobies: beneficial effects of alien prey on a threatened vertebrate. Canadian Journal of Zoology 84: 108–115.CrossRefGoogle Scholar
  54. Kipp, R., I. Hébert, M. Lacharité & A. Ricciardi, 2012. Impacts of predation by the Eurasian round goby (Neogobius melanostomus) on molluscs in the upper St. Lawrence River. Journal of Great Lakes Research 38: 78–89.CrossRefGoogle Scholar
  55. Kublickas, A., 1959. Pitanie bentosojadnyh ryb Zaliva Kuršju mares. [Nourishment of bentic feeder fish in Curonian Lagoon.]. In Jankevičius, K., (ed.) Kuršju mares. [Curonian Lagoon.] Pjargale, Vilnjus: 551 [In Russian].Google Scholar
  56. Kumiko, S. & U. Misako, 2003. Comparative Ecology of the Alien Freshwater Snail Potamopyrgus antipodarum and the Indigenous Snail Semisulcospira spp. Journal of the Malacological Society of Japan 62: 39–53.Google Scholar
  57. Landsman, S. J., V. M. Nguyen, L. F. G. Gutowsky, J. Gobin, K. V. Cook, T. R. Binder, N. Lower, R. L. McLaughlin & S. J. Cooke, 2011. Fish movement and migration studies in the Laurentian Great Lakes: research trends and knowledge gaps. Journal of Great Lakes Research 37: 365–379.CrossRefGoogle Scholar
  58. Lasenby, D. C., T. G. Northcote & M. Furst, 1986. Theory, practise, and effects of Mysis relicta introductions to North American and Scandinavian lakes. Canadian Journal of Fisheries and Aquatic Sciences 43: 1277–1284.CrossRefGoogle Scholar
  59. Lysne, S. & P. Koetsier, 2008. Comparison of desert valvata snail growth at three densities of the invasive New Zealand mudsnail. Western North American Naturalist 68: 103–106.CrossRefGoogle Scholar
  60. Maron, J. L. & M. Vilà, 2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95: 361–373.CrossRefGoogle Scholar
  61. Martel, A., 1995. Demography and growth of the exotic zebra mussel (Dreissena polymorpha) in the Rideau River (Ontario). Canadian Journal of Zoology 73: 2244–2250.CrossRefGoogle Scholar
  62. McCarter, N. H., 1986. Food and energy in the diet of brown and rainbow trout from Lake Benmore, New Zealand. New Zealand Journal of Marine and Freshwater Research 20: 551–559.CrossRefGoogle Scholar
  63. Mitchell, C. E. & A. G. Power, 2003. Release of invasive plants from fungal and viral pathogens. Nature 421: 625–627.CrossRefPubMedGoogle Scholar
  64. Montserrat, M., S. Magalhães, M. W. Sabelis, A. M. de Roos & A. Janssen, 2012. Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121: 67–76.CrossRefGoogle Scholar
  65. Moore, J. W., D. B. Herbst, W. N. Heady & S. M. Carlson, 2012. Stream community and ecosystem responses to the boom and bust of an invading snail. Biological Invasions 14: 2435–2446.CrossRefGoogle Scholar
  66. Murria, C., N. Bonada & N. Prat, 2008. Effects of the invasive species Potamopyrgus antipodarum (Hydrobiidae, Mollusca) on community structure in a small Mediterranean stream. Fundamental and Applied Limnology 171: 131–143.CrossRefGoogle Scholar
  67. Nikolaev, I. I., 1951. O novyh vselencakh v faune i flore Severnogo morja i Baltiki iz otdalennyh rajonov [On new introductions in fauna and flora of the North and the Baltic Seas from distant areas]. Zoologicheskij Zhurnal 30: 556–561.Google Scholar
  68. Parkyn, S. M., C. F. Rabeni & K. J. Collier, 1997. Effects of crayfish (Paranephrops planifrons: Parastacidae) on in-stream processes and benthic faunas: a density manipulation experiment. New Zealand Journal of Marine and Freshwater Research 31: 685–692.CrossRefGoogle Scholar
  69. Ponder, W. F., 1988. Potamopyrgus antipodarum, a molluscan colonizer of Europe and Australia. Journal of Molluscan Studies 54: 271–286.CrossRefGoogle Scholar
  70. Raby, G. D., L. F. G. Gutowsky & M. G. Fox, 2010. Diet composition and consumption rate in round goby (Neogobius melanostomus) in its expansion phase in the Trent River, Ontario. Environmental Biology of Fishes 89: 143–150.CrossRefGoogle Scholar
  71. Radea, C., I. Louvrou & A. Economou-Amilli, 2008. First record of the New Zealand mud snail Potamopyrgus antipodarum J.E. Gray 1843 (Mollusca: Hydrobiidae) in Greece – notes on its population structure and associated microalgae. Aquatic Invasions 3: 341–344.CrossRefGoogle Scholar
  72. Rakauskas, V., Ž. Pūtys, J. Dainys, J. Lesutienė, L. Ložys & K. Arbačiauskas, 2013. Increasing population of the invader round goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and its trophic role in the Curonian Lagoon, SE Baltic Sea. Acta Ichtyologica et Piscatoria 43: 95–108.CrossRefGoogle Scholar
  73. Reshetnikov, A. N., 2003. The introduced fish, rotan (Perccottus glenii), depresses population of aquatic animals (macroivertebrates, amphibians, and fish). Hydrobiologia 510: 83–90.CrossRefGoogle Scholar
  74. Reshetnikov, A. N., 2008. Does rotan Perccottus glenii (Perciformes: Odontobutidae) eat the eggs of fish and amphibians? Journal of Ichthyology 48: 336–344.CrossRefGoogle Scholar
  75. Ricciardi, A. & H. J. MacIsaac, 2011. Impacts of biological invasions on freshwater ecosystems. In Richardson, D. M. (ed.), Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, West Sussex: 211–224.Google Scholar
  76. Riley, L. A., M. F. Dybdahl & Jr R. O. Hall, 2008. Invasive species impact: asymmetric interactions between invasive and endemic freshwater snails. Journal of the North American Benthological Society 27: 509–520.CrossRefGoogle Scholar
  77. Robinson, J. V. & G. A. Wellborn, 1988. Ecological resistance to the invasion of a freshwater clam Corbicula fluminea: fish predation effects. Oecologia 77: 445–452.CrossRefGoogle Scholar
  78. Ryan, P. A., 1982. Energy contents of some New Zealand freshwater animals. New Zealand Journal of Marine and Freshwater Research 16: 283–287.CrossRefGoogle Scholar
  79. Schreiber, E. S. G., A. Glaister, G. P. Quinn & P. S. Lake, 1998. Life history and population dynamics of the exotic New Zealand mudsnail (Prosobranchia: Hydrobiidae) in Lake Purrumbete, Victoria, Australia. Australian Journal of Marine & Freshwater Research 49: 73–78.CrossRefGoogle Scholar
  80. Schreiber, E. S. G., P. S. Lake & G. P. Quinn, 2002. Facilitation of native stream fauna by an invading species? Experimental investigation of the interaction of the snail, Potamopyrgus antipodarum (Hydrobiidae) with native benthic fauna. Biological Invasions 4: 317–325.CrossRefGoogle Scholar
  81. Semenchenko, V., J. Grabowska, M. Grabowski, V. Rizevsky & M. Pluta, 2011. Non-native fish in Belarusian and Polish areas of the European central invasion corridor. Oceanological and Hydrobiological Studies 40: 57–67.CrossRefGoogle Scholar
  82. Šivickis, P. B., 1960a. Lietuvos moliuskai ir jų apibūdinimas [Lithuanian molluscs and their identification]. Institute of Zoology and Parasitology, Vilnius, Lithuania (in Lithuanian).Google Scholar
  83. Šivickis, P. B., 1960b. Baltijos jūros moliuskai Lietuvos TSR pajūryje [Baltic Sea Molluscs at the coast of Lithuanian SSR). Lietuvos TSR Mokslų akademijos darbai, Serija C 3: 125–132. (in Lithuanian).Google Scholar
  84. Son, M. O., 2008. Rapid expansion of the New Zealand mud snail Potamopyrgus antipodarum (Gray, 1843) in the Azov-Black Sea Region. Aquatic Invasions 3: 335–340.CrossRefGoogle Scholar
  85. Son, M. O., M. V. Nabozhenko & I. V. Shokhin, 2008. The Don River basin is a new stage of expansion of Potamopyrgus jenkinsi (Smith, 1889) (Gastropoda, Hydrobioidea) in Europe. Doklady biological sciences: proceedings of the Academy of Sciences of the USSR, Biological sciences sections: 129–130.Google Scholar
  86. Spencer, C. N., B. R. McClelland & J. A. Stanford, 1991. Shrimp stocking, salmon collapse, and eagle displacement. Cascading interactions in the food web of a large aquatic ecosystem. Bioscience 41: 14–21.CrossRefGoogle Scholar
  87. Spencer, C. N., D. S. Potter, R. T. Bukantis & J. A. Stanford, 1999. Impact of predation by Mysis relicta on zooplankton in Flathead Lake, Montana, USA. Journal of Plankton Research 21: 51–64.CrossRefGoogle Scholar
  88. Strayer, D. L. & H. M. Malcom, 2005. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshwater Biology 51: 117–130.CrossRefGoogle Scholar
  89. Strayer, D. L., J. Powell, P. Ambrose, L. C. Smith, M. L. Pace & D. T. Fischer, 1996. Arrival, spread, and early dynamics of a zebra mussel (Dreissena polymorpha) population in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 53: 1143–1149.CrossRefGoogle Scholar
  90. Svanbäck, R. & P. Eklöv, 2002. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131: 61–70.CrossRefGoogle Scholar
  91. Torchin, M. E., K. D. Lafferty & A. M. Kuris, 2002. Parasites and marine invasions. Parasitology 124: S137–S151.CrossRefGoogle Scholar
  92. Torchin, M. E., K. D. Lafferty, A. P. Dobson, V. J. McKenzie & A. M. Kuris, 2003. Introduced species and their missing parasites. Nature 421: 628–630.CrossRefPubMedGoogle Scholar
  93. Twardochleb, L. A., M. Novak & J. S. Moore, 2012. Using the functional response of a consumer to predict biotic resistance to invasive prey. Ecological Applications 22: 1162–1171.CrossRefPubMedGoogle Scholar
  94. Vinson, M. R. & M. A. Baker, 2008. Poor growth of rainbow trout fed New Zealand mudsnails Potamopyrgus antipodarum. North American Journal of Fisheries Management 28: 701–709.CrossRefGoogle Scholar
  95. Vinson, M. R., E. C. Dinger & M. A. Baker, 2006. Flaming Gorge Tailwater aquatic biota monitoring programme, 1994-2005. Report to Utah Division of Wildlife Resources and U.S. Bureau of Reclamation, Salt lake City, Utah [available from http://www.usu.edu/buglab/Content/Files/FGD%201994to2005.pdf]. Accessed on 03 June 2015.
  96. Virbickas, J., 2000. Lietuvos žuvys [Fishes of Lithuania]. Ekologijos institutas, Vilnius (in Lithuania).Google Scholar
  97. Virbickas, T., 2012. Ichtiofaunos tyrimai bei ekologinės būklės pagal žuvų rodiklius įvertinimas Lietuvos upėse ir ežeruose [Fish fauna studies in Lithuanian rivers and lakes and their ecological status assessment based on the fish fauna metrics]. Gamtos tyrimų centro I-a tarpinė ataskaita, aplinkos apsaugos agentūra (in Lithuanian).Google Scholar
  98. Virbickas, T., 2013. Ichtiofaunos tyrimai bei ekologinės būklės pagal žuvų rodiklius įvertinimas Lietuvos upėse ir ežeruose [Fish fauna studies in Lithuanian rivers and lakes and their ecological status assessment based on the fish fauna metrics]. Gamtos tyrimų centro ataskaita, aplinkos apsaugos agentūra (in Lithuanian).Google Scholar
  99. Virbickas, T., 2014. Žuvų tyrimai paviršiniuose telkiniuose ir jų ekologinės būklės įvertinimas pagal ichtiofaunos rodiklius [Fish fauna studies in a surface water bodies and their ecological status assessment based on the fish fauna metrics]. Gamtos tyrimų centro I-a tarpinė ataskaita, aplinkos apsaugos agentūra (in Lithuanian).Google Scholar
  100. Watzin, M. C., K. Joppe-Mercure, J. Rowder, B. Lancaster & L. Bronson, 2008. Significant fish predation on zebra mussels Dreissena polymorpha in Lake Champlain, U.S.A. Journal of Fish Biology 73: 1585–1599.CrossRefGoogle Scholar
  101. Wetzel, R. G., 2001. Limnology. Lake and river ecosystems, 3rd ed. Academic Press, Elsevier: 682–688.Google Scholar
  102. Winterbourn, M., 1970. The New Zealand species of the genus Potamopyrgus (Gastropoda: Hydrobiidae). Malacologia 10: 283–321.Google Scholar
  103. Winterbourn, M. J. & A. Fegley, 1989. Effects of nutrient enrichment and grazing on periphyton assemblages in some spring-fed, South Island streams. New Zealand Natural Sciences 16: 57–65.Google Scholar
  104. Witkowski, A. & J. Grabowska, 2012. The non-indigenous freshwater fishes of Poland: threats to the native ichthyofauna and consequences for the fishery: a review. Acta Ichtyologica et Piscatoria 42: 77–87.CrossRefGoogle Scholar
  105. Zamora, L. & R. Moreno-Amich, 2002. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system. Hydrobiologia 483: 209–218.CrossRefGoogle Scholar
  106. Zettler, M. L. & D. Daunys, 2007. Long-term macrozoobenthos changes in a shallow boreal lagoon: comparison of a recent biodiversity inventory with historical data. Limnologica 37: 170–185.CrossRefGoogle Scholar
  107. Zettler, M. L., A. Zettler & D. Daunys, 2005. Bemerkenswerte Süßwassermollusken aus Litauen. Aufsammlungen vom September 2004. Malakologische Abhandlugen 23: 27–40.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vytautas Rakauskas
    • 1
  • Rokas Butkus
    • 1
  • Evelina Merkytė
    • 1
  1. 1.Laboratory of Evolutionary Ecology of HydrobiontsNature Research CentreVilnius-21Lithuania

Personalised recommendations