, Volume 775, Issue 1, pp 123–137 | Cite as

Harsh habitats? Waterfalls and their faunal dynamics in tropical Australia

  • P. D. Clayton
  • R. G. PearsonEmail author
Primary Research Paper


There are few studies of the ecology of waterfalls despite their being prominent landscape features and of ecological interest because of their physical characteristics. We compared invertebrate assemblages of 5 waterfalls in the Australian Wet Tropics over 12–18 mo. Waterfall assemblages were distinct from those of riffles and bedrock, with some taxa particularly abundant on waterfalls (e.g. Simuliidae, Hydropsychidae) and others restricted to them (e.g. Blephariceridae, Pyralidae), and supported more species than bedrock but fewer than riffles. Differences among waterfalls related to differences in discharge, shade and habitat complexity. Waterfalls comprised a complex of microhabitat patches, with high-flow smooth, high-flow rough, vertical and spray zones most prevalent and distinguishable by gradient, roughness, water velocity, depth and invertebrate assemblages. In high-flow microhabitats rheophilic taxa (e.g. Simuliidae) were prevalent, while in the spray zone a range of madicolous taxa (e.g. various Coleoptera) occurred. Within microhabitats, temporal change was moderate, with stable composition over 12 months. Flood disturbance had limited effect on assemblages, as large flows overshot steep surfaces; drought may be more of a threat because recovery is hindered by isolation and lack of hyporheic refugia. Given their isolation, limited extent and distinctive fauna, waterfalls merit special conservation attention.


Waterfall Invertebrate community Stream Disturbance Tropic 



We thank Scott Cuthbertson, Jane Orr, Geoff Power and Lance Wilkie for assistance in sampling the waterfalls; Ros St Clair, Ian Campbell, John Hawking and Peter Zwick for taxonomic advice; and Dr. C. Colón-Gaud and two anonymous reviewers for their constructive comments on the manuscript.

Supplementary material

10750_2016_2719_MOESM1_ESM.docx (10 kb)
Supplementary material 1 (DOCX 10 kb)
10750_2016_2719_MOESM2_ESM.docx (60 kb)
Supplementary material 2 (DOCX 60 kb)


  1. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.Google Scholar
  2. Australian Government, 2005. A Directory of Important Wetlands in Australia. Accessed online 2 June 2015 at
  3. Benson, L. J. & R. G. Pearson, 1987. Drift and upstream movements of macro-invertebrates in a tropical Australian stream. Hydrobiologia 153: 225–239.CrossRefGoogle Scholar
  4. Boon, P. J., 1988. Notes on the distribution and biology of Smicridea (Trichoptera: Hydropsychidae) in Jamaica. Archiv für Hydrobiologie 111: 423–433.Google Scholar
  5. Bunn, S. E. & J. M. Hughes, 1997. Dispersal and recruitment in streams: evidence from genetic studies. Journal of the North American Benthological Society 16: 338–346.CrossRefGoogle Scholar
  6. Cheshire, K., L. Boyero & R. G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748–769.CrossRefGoogle Scholar
  7. Clarke, K. R. & R. N. Gorley, 2006. PRIMER Version 6. User Manual/Tutorial. PRIMER-E Ltd., Plymouth.Google Scholar
  8. Clayton, P.D., 1995. The ecology of waterfalls in the Australian wet tropics. PhD thesis, James Cook University, Australia.Google Scholar
  9. Collier, K. J. & B. J. Smith, 2006. Distinctive invertebrate assemblages in rockface seepages enhance lotic biodiversity in northern New Zealand. Biodiversity and Conservation 15: 3591–3616.CrossRefGoogle Scholar
  10. Davis, J. A. & L. A. Barmuta, 1989. An ecologically useful classification of mean and near-bed flows in streams and rivers. Freshwater Biology 21: 271–282.CrossRefGoogle Scholar
  11. Dudgeon, D., 1992. Patterns and Processes in Stream Ecology: A Synoptic Review of Hong Kong Running Waters. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  12. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefPubMedGoogle Scholar
  13. Gore, J. A., 1994. Hydrological change. In Calow, P. & G. E. Petts (eds), The Rivers Handbook: Hydrological and Ecological Principles. Blackwell Scientific Publications, London: 33–54.CrossRefGoogle Scholar
  14. Harding, J. & M. H. Colbo, 1981. Competition for attachment sites between larvae of Simuliidae (Diptera). The Canadian Entomologist 113: 761–763.CrossRefGoogle Scholar
  15. Hawkins, C. P., J. L. Kershner, P. A. Bisson, M. D. Bryant, L. M. Decker, S. V. Gregory, D. D. McCullough, C. K. Overton, G. H. Reeves, R. J. Steedman & M. K. Young, 1993. A hierarchical approach to classifying stream habitat features. Fisheries 18: 3–12.CrossRefGoogle Scholar
  16. Hearnden, M. R. & R. G. Pearson, 1991. Habitat partitioning among mayflies (Insecta: Ephemeroptera) in an Australian tropical stream. Oecologia 87: 91–101.CrossRefGoogle Scholar
  17. Hemphill, N., 1988. Competition between two stream dwelling filter-feeders, Hydropsyche oslari and Simulium virgatum. Oecologia 77: 73–80.CrossRefGoogle Scholar
  18. Hildrew, A. G. & P. S. Giller, 1992. Patchiness, species interactions and disturbance in the stream benthos. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology: Scale, Pattern and Process. Blackwell Scientific Publications, London: 21–62.Google Scholar
  19. Hora, S. L., 1930. Ecology, bionomics and evolution of the torrential fauna, with special reference to the organs of attachment. Philosophical Transactions of the Royal Society of London B 218: 171–282.CrossRefGoogle Scholar
  20. Hughes, J. M., S. E. Bunn, D. A. Hurwood, S. Choy & R. G. Pearson, 1996. Genetic differentiation among populations of Caridina zebra (Decapoda: Atyidae) in tropical rainforest streams, northern Australia. Freshwater Biology 36: 289–296.CrossRefGoogle Scholar
  21. James, C. S., J. VanDerWal, S. J. Capon, L. Hodgson, N. Waltham, D. P. Ward, B. J. Anderson & R. G. Pearson, 2013. Identifying climate refuges for freshwater biodiversity across Australia. National Climate Change Adaptation Research Facility, Gold Coast, 150 pp. ISBN: 978-1-925039-56-6.Google Scholar
  22. Khan, M. S. & S. A. Malik, 1987. Buccopharyngeal morphology of tadpole larva of Rana hazarensis Dubois and Khan 1979, and its torrenticole adaptions. Biologia Gabonica 33: 45–60.Google Scholar
  23. Kjærandsen, J., 2005. Species assemblages and community structure of adult caddisflies along a headwater stream in southeastern Ghana (Insecta: Trichoptera). Biodiversity and Conservation 14: 1–43.CrossRefGoogle Scholar
  24. Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.CrossRefGoogle Scholar
  25. Lake, P. S., E. S. G. Schreiber, B. J. Milne & R. G. Pearson, 1994. Species richness in streams: patterns over time, with stream size and with latitude. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 25: 1822–1826.Google Scholar
  26. McCune, B. & M.J. Mefford, 2011. PC-ORD. Multivariate Analysis of Ecological Data. Version 6.20. MjM Software: Gleneden Beach, Oregon, USA.Google Scholar
  27. Northcote, T. G., 1981. Juvenile current response, growth and maturity of above and below waterfall stocks of rainbow trout, Salmo gairdneri. Journal of Fisheries Biology 18: 741–751.CrossRefGoogle Scholar
  28. Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.CrossRefGoogle Scholar
  29. Pearson, R. G., 2014. Dynamics of invertebrate diversity in a tropical stream. Diversity 6: 771–791.CrossRefGoogle Scholar
  30. Pearson, R. G. & N. M. Connolly, 2000. Nutrient enhancement, food quality and community dynamics in a tropical rainforest stream. Freshwater Biology 43: 31–42.CrossRefGoogle Scholar
  31. Pearson, R. G., N. M. Connolly & L. Boyero, 2015. Ecology of streams in a biogeographic isolate – the Queensland Wet Tropics, Australia. Freshwater Science 34: 797–819.CrossRefGoogle Scholar
  32. Quinn, J. M. & C. W. Hickey, 1994. Hydraulic parameters and benthic invertebrate distributions in two gravel-bed New Zealand rivers. Freshwater Biology 32: 489–500.CrossRefGoogle Scholar
  33. Rackemann, S. L., B. J. Robson & T. G. Matthews, 2012. Conservation value of waterfalls as habitat for lotic insects of western Victoria, Australia. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 171–178.CrossRefGoogle Scholar
  34. Reice, S. R., R. C. Wissmar & R. J. Naiman, 1990. Disturbance regimes, resilience and recovery of animal communities and habitats in lotic ecosystems. Environmental Management 14: 647–659.CrossRefGoogle Scholar
  35. Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.CrossRefGoogle Scholar
  36. Richards, S. J., 1992. The tadpole of the Australian frog Litoria nyakalensis (Anura, Hylidae), and a key to the torrent tadpoles of northern Queensland. Alytes 10: 99–103.Google Scholar
  37. Rosser, Z. & R. G. Pearson, 1995. Responses of rock fauna to physical disturbance in two Australian tropical rainforest streams. Journal of the North American Benthological Society 14: 183–196.CrossRefGoogle Scholar
  38. Schroder, P., 1988. Gut-passage, particle selection and ingestion of filter feeding blackfly (Diptera; Simuliidae) larvae inhabiting a waterfall in Tahiti (French Polynesia). Aquatic Insects 10: 1–16.CrossRefGoogle Scholar
  39. Sinclair, B. J., 1988. The madicolous Tipulidae (Diptera) of eastern North America, with descriptions of the biology and immature stages of Dactylolabis montana (Osten Sacken) and D. hudsonica Alexander (Diptera: Tipulidae). The Canadian Entomologist 120: 569–573.CrossRefGoogle Scholar
  40. Soulsby, C., A. Pomeroy & C. Gibbins, 1997. Hydrology and hydrochemistry of a montane rainforest catchment in Queensland, Australia. Hydrochemistry: Proceedings of the Rabat Symposium, April 1997. IAHS Publication No. 244: 299–307.Google Scholar
  41. Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391.CrossRefGoogle Scholar
  42. Statzner, B. & B. Higler, 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.CrossRefGoogle Scholar
  43. Thuesen, P. A., B. J. Pusey, D. R. Peck, R. G. Pearson & B. C. Congdon, 2008. Genetic differentiation over small spatial scales in the absence of physical barriers in an Australian rainforest stream fish. Journal of Fish Biology 72: 1174–1187.CrossRefGoogle Scholar
  44. Williams, W. D., 1980. Australian Freshwater Life, 2nd ed. The MacMillan Company of Australia, Melbourne.Google Scholar
  45. Wolda, H., 1988. Insect seasonality: why? Annual Review of Ecology and Systematics 19: 1–18.CrossRefGoogle Scholar
  46. Wolda, H., 1989. Seasonal cues in tropical organisms. Rainfall? Not necessarily! Oecologia 80: 437–442.CrossRefGoogle Scholar
  47. Yule, C. M., 1996. Spatial distribution of the invertebrate fauna of an aseasonal tropical stream on Bougainville Island, Papua New Guinea. Archiv fur Hydrobiologie 137: 227–249.Google Scholar
  48. Yule, C. M. & R. G. Pearson, 1996. Aseasonality of benthic invertebrates in a tropical stream on Bougainville Island, Papua New Guinea. Archiv fur Hydrobiologie 137: 95–117.Google Scholar
  49. Zwick, P., 1981. Blephariceridae. Monographiae Biologicae 41: 1183–1193.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Marine and Environmental Sciences and TropWaterJames Cook UniversityTownsville CityAustralia
  2. 2.HighfieldsAustralia

Personalised recommendations