, Volume 796, Issue 1, pp 265–276 | Cite as

A metadata approach to documenting sex in phylum Rotifera: diapausing embryos, males, and hatchlings from sediments

  • Elizabeth J. Walsh
  • Linda May
  • Robert L. Wallace


We present a survey of the literature documenting sexuality in monogonont rotifers, including reports of diapausing embryos (DEs), males, and/or hatchlings from dry sediments. Of 30 families, 27 possess species with documented occurrences of sex. Information on DEs is lacking in 41 genera. Of ~300 species with evidence of sexuality (~20% of ~1500 monogononts), only 172 had direct observations of DEs; in the others, DE production was inferred from observations of males and/or hatchlings. DEs are sufficiently widespread to affirm that their presence is plesiomorphic, however few DE characteristics show a phylogenetic signature. They differ widely in volume (~0.11–100 × 105 µm3) and have a varied surface morphology (smooth to highly structured and ornamented). Some species retain DEs within their bodies; others carry them, deposit them on or attach them to surfaces, or release them free into the water. To better understand the evolutionary forces that influence monogonont sexuality and DE biology, a more comprehensive and uniform reporting scheme is needed. To enhance information dissemination, we propose that new and existing data on sex in monogonont rotifers (DEs, males, and hatchlings from dry sediments) be placed in an Internet-based repository.


Egg volume Meta-analysis Monogononta Morphology Phylogenetic distribution Resting eggs Survey 



This project was funded in part by the US National Science Foundation, DEB 0516032 and DEB 1257068 (E. J. Walsh), DEB 1257116 (R. L. Wallace), grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH), and the Natural Environment Research Council, UK (L. May). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Supplementary material

10750_2016_2712_MOESM1_ESM.pdf (165 kb)
Supplementary material 1 (PDF 166 kb)


  1. Albritton, C. J. & D. S. White, 2004. Hatching of rotifer eggs from reservoir sediment. Southeastern Naturalist 3: 359–370.CrossRefGoogle Scholar
  2. Altermatt, F., S. Schreiber & M. Holyoak, 2011. Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92: 859–870.PubMedCrossRefGoogle Scholar
  3. Alver, M. O. & A. Hagiwara, 2007. An individual-based population model for the prediction of rotifer population dynamics and resting egg production. Hydrobiologia 593: 19–26.CrossRefGoogle Scholar
  4. Angulo, O., J. C. López-Marcos & M. A. López-Marcos, 2004. A numerical simulation for the dynamics of the sexual phase of monogonont Rotifera. Comptes Rendus Biologies 327: 293–303.PubMedCrossRefGoogle Scholar
  5. Aparici, E., M. J. Carmona & M. Serra, 2001. Variability for mixis initiation in Brachionus plicatilis. Hydrobiologia 446/447: 45–50.CrossRefGoogle Scholar
  6. Aparici, E., M. J. Carmona & M. Serra, 2002. Evidence for an even sex allocation in haplodiploid cyclical parthenogens. Journal of Evolutionary Biology 15: 65–73.CrossRefGoogle Scholar
  7. Arnemo, R., B. Berzins, B. Grönberg & I. Mellgren, 1968. The dispersal in Swedish waters of Kellicottia bostoniensis (Rousselet) (Rotatoria). Oikos 19: 351–358.CrossRefGoogle Scholar
  8. Bailey, S. A., I. C. Duggan, C. D. A. van Overdijk, P. T. Jenkins & H. J. MacIsaac, 2003. Viability of invertebrate diapausing eggs collected from residual ballast sediment. Limnology and Oceanography 48: 1701–1710.CrossRefGoogle Scholar
  9. Bailey, S. A., I. C. Duggan, C. D. A. Van Overdijk, T. H. Johengen, D. F. Reid & H. J. MacIsaac, 2004. Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshwater Biology 49: 286–295.CrossRefGoogle Scholar
  10. Bailey, S. A., I. C. Duggan, P. T. Jenkins & H. J. MacIsaac, 2005a. Invertebrate resting stages in residual ballast sediment of transoceanic ships. Canadian Journal of Fisheries and Aquatic Sciences 62: 1090–1103.CrossRefGoogle Scholar
  11. Bailey, S. A., K. Nandakumar, I. C. Duggan, C. D. A. van Overdijk, T. H. Johengen, D. F. Reid & H. J. MacIsaac, 2005b. In situ hatching of invertebrate diapausing eggs from ships’ ballast sediment. Diversity and Distributions 11: 453–460.CrossRefGoogle Scholar
  12. Balompapuerng, M. D., N. Munuswamy, A. Hagiwara & K. Hirayama, 1997. Effect of disinfectants on the hatching of marine rotifer resting eggs Brachionus plicatilis Müller. Aquaculture Research 28: 559–565.CrossRefGoogle Scholar
  13. Battauz, Y. S., S. B. José de Paggi & J. C. Paggi, 2014. Passive zooplankton community in dry littoral sediment: reservoir of diversity and potential source of dispersal in a subtropical floodplain lake of the Middle Paraná River (Santa Fe, Argentina). International Review of Hydrobiology 99: 277–286.CrossRefGoogle Scholar
  14. Bennett, W. N. & M. E. Boraas, 1988. Isolation of a fast-growing strain of the rotifer Brachionus calyciflorus Pallas using turbidostat culture. Aquaculture 73: 27–36.CrossRefGoogle Scholar
  15. Bennett, W. N. & M. E. Boraas, 1989. A demographic profile of the fastest growing metazoan: a strain of Brachionus calyciflorus (Rotifera). Oikos 55: 365–369.CrossRefGoogle Scholar
  16. Bogoslovsky, A. S., 1963. Materials to the study of the resting eggs of rotifers. I. Biulleten’ Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii 68: 50–67. (In Russian with English summary; on Brachionus calyciflorus).Google Scholar
  17. Boschetti, C., F. Leasi & C. Ricci, 2011. Developmental stages in diapausing eggs: an investigation across monogonont rotifer species. Hydrobiologia 662: 149–155.CrossRefGoogle Scholar
  18. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  19. Briski, E., M. E. Cristescu, S. A. Bailey & H. J. MacIsaac, 2010. Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions 13: 1325–1340.CrossRefGoogle Scholar
  20. Buchner, H., 1987. Untersuchungen über die Bedingungen der heterogonen Fortpflanzungsarten bei den Rädertieren. III: Über den Verlust der miktischen potenz bei Brachionus urceolaris. Archiv fur Hydrobiologie 109: 333–354.Google Scholar
  21. Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.PubMedCrossRefGoogle Scholar
  22. Caprioli, M., A. Krabbe Katholm, G. Melone, H. Ramløv, C. Ricci & N. Santo, 2004. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology, Part A 139: 527–532.CrossRefGoogle Scholar
  23. Carmona, M. J., N. Dimas-Flores, J. Montero-Pau & M. Serra, 2011. Effect of experimental methodology on estimation of density at sex initiation in cyclically parthenogenetic rotifers. Hydrobiologia 662: 131–139.CrossRefGoogle Scholar
  24. Champ, P. & R. Pourriot, 1977. Particularities biologiques et ecologiques du Rotifere Sinantherina socialis (Linne). Hydrobiologia 55: 55–64.CrossRefGoogle Scholar
  25. Chittapun, S., 2011. Fire and recovery of resting egg bank: an experimental study in paddy fields in Pathum Thani province, Thailand. Hydrobiologia 662: 163–170.CrossRefGoogle Scholar
  26. Chittapun, S., P. Pholpunthin & H. Segers, 2005. Restoration of tropical peat swamp rotifer communities after perturbation: an experimental study of recovery of rotifers from the resting egg bank. Hydrobiologia 546: 281–289.CrossRefGoogle Scholar
  27. Chittapun, S., P. Pholpunthin & L. Sanoamuang, 2009. Diversity and composition of zooplankton in rice fields during a crop cycle at Pathum Thani province, Thailand. Songklanakarin Journal of Science and Technology 31: 261–267.Google Scholar
  28. de Wit, R. & T. Bouvier, 2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environmental Microbiology 8: 755–758.PubMedCrossRefGoogle Scholar
  29. Denekamp, N. Y., M. A. S. Thorne, M. S. Clark, M. Kube, R. Reinhardt & E. Lubzens, 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Rotifer resting egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Archiv für Hydrobiologie 153: 409–420.CrossRefGoogle Scholar
  31. Dumont, H. J., 1983. Biogeography of rotifers. Hydrobiologia 104: 19–30.CrossRefGoogle Scholar
  32. Edmondson, W. T., 1940. The sessile Rotatoria of Wisconsin. Transactions of the American Microscopical Society 59: 433–459.CrossRefGoogle Scholar
  33. Eloranta, P., 1988. Kellicottia bostoniensis (Rousellet), a planktonic rotifer species new to Finland. Annales Zoologici Fennici 25: 249–252.Google Scholar
  34. Epp, L. S., K. R. Stoof, M. H. Trauth & R. Tiedemann, 2010. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. Journal of Paleolimnology 43: 939–954.CrossRefGoogle Scholar
  35. Frisch, D., A. J. Green & J. Figuerola, 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences 69: 568–574.CrossRefGoogle Scholar
  36. Fussmann, G., S. P. Ellner & N. G. Hairston Jr., 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society B 270: 1015–1022.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gabaldón, C., J. Montero-Pau, M. J. Carmona & M. Serra, 2015. Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research 37: 953–965.CrossRefGoogle Scholar
  38. Gaikwad, S. R., K. N. Ingle & S. R. Thorat, 2008. Study of zooplankton emergence pattern and resting egg diversity of recently dried waterbodies in North Maharashtra Region. Journal of Environmental Biology 29: 353–356.PubMedGoogle Scholar
  39. García-Roger, E. M., X. Armengol-Díaz, M. J. Carmona & M. Serra, 2008. Assessing rotifer diapausing egg bank diversity and abundance in brackish temporary environments: an ex situ sediment incubation approach. Fundamental and Applied Limnology 173: 79–88.CrossRefGoogle Scholar
  40. García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Hatching and viability of rotifer diapausing eggs collected from pond sediments. Freshwater Biology 51: 1351–1358.CrossRefGoogle Scholar
  41. García-Roger, E. M., M. Serra & M. J. Carmona, 2014. Bet-hedging in diapausing egg hatching of temporary rotifer populations - A review of models and new insights. International Review of Hydrobiology 99: 96–106.CrossRefGoogle Scholar
  42. Gilbert, J. J., 1974. Dormancy in rotifers. Transactions of the American Microscopical Society 93: 490–513.CrossRefGoogle Scholar
  43. Gilbert, J. J., 1977. Mictic-female production in monogonont rotifers. Archiv für Hydrobiologie, Beiheft 8: 142–155.Google Scholar
  44. Gilbert, J. J., 2004a. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology 49: 1505–1515.CrossRefGoogle Scholar
  45. Gilbert, J. J., 2004b. Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. Journal of Limnology 63(Suppl. 1): 32–36.CrossRefGoogle Scholar
  46. Gilbert, J. J., 2007. Induction of mictic females in the rotifer Brachionus: oocytes of amictic females respond individually to population-density signal only during oogenesis shortly before oviposition. Freshwater Biology 52: 1417–1426.CrossRefGoogle Scholar
  47. Gilbert, J. J., 2010. Effect of food concentration on the production and viability of resting eggs in the rotifer Brachionus: implications for the timing of sexual reproduction. Freshwater Biology 55: 2437–2446.CrossRefGoogle Scholar
  48. Gilbert, J. J. & D. K. Schreiber, 1995. Induction of diapausing amictic eggs in Synchaeta pectinata. Hydrobiologia 313/314: 345–350.CrossRefGoogle Scholar
  49. Gilbert, J. J. & D. K. Schreiber, 1998. Asexual diapause induced by food limitation in the rotifer Synchaeta pectinata. Ecology 79: 1371–1381.CrossRefGoogle Scholar
  50. Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology and Oceanography 49: 1341–1354.CrossRefGoogle Scholar
  51. Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.CrossRefGoogle Scholar
  52. Gilbert, J. J. & E. S. Wurdak, 1978. Species-specific morphology of resting eggs in the rotifer Asplanchna. Transactions of the American Microscopical Society 97: 330–339.CrossRefGoogle Scholar
  53. Gómez, A., 2005. Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546: 83–99.CrossRefGoogle Scholar
  54. Gómez, A. & G. R. Carvalho, 2000. Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Molecular Ecology 9: 203–214.PubMedCrossRefGoogle Scholar
  55. Hagiwara, A., 1996. Appearance of floating resting eggs in the rotifers Brachionus plicatilis and B. rotundiformis. Bulletin of the Faculty of Fisheries, Nagasaki University 77: 111–115.Google Scholar
  56. Hagiwara, A. & A. Hino, 1989. Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186/187: 415–421.CrossRefGoogle Scholar
  57. Hairston Jr, N. G., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41: 1087–1092.CrossRefGoogle Scholar
  58. Hairston Jr, N. G., A. M. Hansen & W. R. Schaffner, 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biology 45: 133–145.CrossRefGoogle Scholar
  59. Hood, J., 1895. On the Rotifera of the County Mayo. Proceedings of the Royal Irish Academy: 664–706.Google Scholar
  60. Jenkins, K. M. & A. J. Boulton, 2003. Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84: 2708–2723.CrossRefGoogle Scholar
  61. Jenkins, D. G. & M. O. Underwood, 1998. Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia 387/388: 15–21.CrossRefGoogle Scholar
  62. Jersabek, C. D. & M. F. Leitner, 2015. The Rotifer World Catalog. World Wide Web electronic publication. Accessed 30 Jan 2016.
  63. Jones, B. L., D. M. Schneider & T. W. Snell, 2012. Thermostable proteins in the diapausing eggs of Brachionus manjavacas (Rotifera). Comparative Biochemistry and Physiology, Part A 162: 193–199.CrossRefGoogle Scholar
  64. Kim, H.-J., K. Suga, B.-M. Kim, J.-S. Rhee, J.-S. Lee & A. Hagiwara, 2015. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Marine Genomics 20: 25–31.PubMedCrossRefGoogle Scholar
  65. King, C. E. & T. W. Snell, 1977. Genetic basis of amphoteric reproduction in rotifers. Heredity 39: 361–364.CrossRefGoogle Scholar
  66. King, C. E. & L. Zhang, 1993. The impact of genetic structure on the dynamics of zooplankton populations. Limnética 9: 51–59.Google Scholar
  67. Koste, W., 1971. Das Rädertier-Porträt. Die Rädertiergattung Collotheca – Mitteleuropäische Arten mit besonders auffallenden Koronalfortsätzen. Mikrokosmos 6: 161–167.Google Scholar
  68. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas, Vol. 2. Gebrüder Borntraeger, Stuttgart.Google Scholar
  69. Langley, J. M., R. J. Shiel, D. L. Nielsen & J. D. Green, 2001. Hatching from the sediment egg-bank, or aerial dispersing? – the use of mesocosms in assessing rotifer biodiversity. Hydrobiologia 446/447: 203–211.CrossRefGoogle Scholar
  70. Lehman, J. T., 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quaternary Research 4: 541–550.CrossRefGoogle Scholar
  71. Liu, W. & C. J. Niu, 2010. Polymorphism in resting egg size and hatching strategy in the rotifer Brachionus calyciflorus Pallas. Zoological Science 27: 330–337.PubMedCrossRefGoogle Scholar
  72. Lubzens, E., O. Zmora & Y. Barr, 2001. Biotechnology and aquaculture of rotifers. Hydrobiologia 446/447: 337–353.CrossRefGoogle Scholar
  73. Luo, Y., Q. Wang & H. Segers, 2012. A peculiar case of intraspecific variability in the Chinese Notholca dongtingensis (Rotifera: Monogononta: Brachionidae). Zootaxa 3532: 37–44.Google Scholar
  74. Marcus, N. H., R. Lutz, W. Burnett & P. Cable, 1994. Age, variability, and vertical distribution of zooplankton resting eggs from an anoxic basin: Evidence of an egg bank. Limnology and Oceanography 39: 154–158.CrossRefGoogle Scholar
  75. May, L., 1986. Rotifer sampling – a complete species list from one visit. Hydrobiologia 134: 117–120.CrossRefGoogle Scholar
  76. May, L., 1987. Effect of incubation temperature on the hatching of rotifer resting eggs collected from sediments. Hydrobiologia 147: 335–338.CrossRefGoogle Scholar
  77. Michaloudi, E., M. Moustaka-Gouni, K. Pantelidakis, M. Katsiapi & S. Genitsaris, 2012. Plankton succession in the temporary Lake Koronia after intermittent dry-out. International Review of Hydrobiology 97: 405–419.CrossRefGoogle Scholar
  78. Mills, S., 2006. Investigations of the Brachionus plicatilis species complex, with particular reference to southwest Western Australia. Ph.D., The University of Western Australia, p 224 + A96.Google Scholar
  79. Munuswamy, N., A. Hagiwara, G. Murugan, K. Hirayama & H. J. Dumont, 1996. Structural differences between the resting eggs of Brachionus plicatilis and Brachionus rotundiformis (Rotifera, Brachionidae): an electron microscopic study. Hydrobiologia 318: 219–223.CrossRefGoogle Scholar
  80. Nielsen, D. L., F. J. Smith, T. J. Hillman & R. J. Shiel, 2000. Impact of water regime and fish predation on zooplankton resting egg production and emergence. Journal of Plankton Research 22: 433–446.CrossRefGoogle Scholar
  81. Nielsen, D. L., D. Smith & R. Petrie, 2012. Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshwater Biology 57: 1306–1314.CrossRefGoogle Scholar
  82. Nipkow, F., 1961. Die Rädertiere im Plankton des Zürichsees und ihre Entwicklungsphasen. Schweizerische Zeitschrift für Hydrobiologie 22: 398–461.Google Scholar
  83. Nogrady, T. & H. Segers (eds), 2002. Rotifera. Volume 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. SPB Academic Publishers BV, The Hague.Google Scholar
  84. Pajdak-Stós, A., E. Fiałkowska, W. Kocerba-Soroka, M. Sobczyk & J. Fyda, 2014. Why is sex so rare in Lecane inermis (Rotifera: Monogononta) in wastewater treatment plants? Invertebrate Biology 133: 128–135.CrossRefGoogle Scholar
  85. Piavaux, A., 1970. Origine de l’envelope chitineuse des oeufs de deux rotifères du genre Euchlanis Ehrenberg. Annales de al Society Royale Zoologique de Belgique 100: 129–137.Google Scholar
  86. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.CrossRefGoogle Scholar
  87. Ricci, C., 2001. Dormancy patterns in rotifers. Hydrobiologia 446/447: 1–11.CrossRefGoogle Scholar
  88. Rico-Martínez, R. & E. J. Walsh, 2013. Sexual reproductive biology of a colonial rotifer Sinantherina socialis (Rotifera: Monogononta): do mating strategies vary between colonial and solitary rotifer species? Marine and Freshwater Behaviour and Physiology 46: 419–430.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rousselet, C. F., 1909. On the geographic distribution of the Rotifera. Journal of the Quekett Microscopical Club, Series 2 10: 465–470.Google Scholar
  90. Rumengan, l F M, V. Warouwl & A. Hagiwara, 1998. Morphometry and resting egg production potential of the tropical ultraminute rotifer Brachionus rotundiformis (Manado strain) fed different algae. Bulletin of the Faculty of Fisheries, Nagasaki University 79: 31–36.Google Scholar
  91. Ruttner-Kolisko, A., 1974. Planktonic rotifers: biology and taxonomy. Die Binnengewässer (Supplement) 26: 1–146.Google Scholar
  92. Ruttner-Kolisko, A., 1977. Amphoteric reproduction in a population of Asplanchna priodonta. Archiv für Hydrobiologie, Beiheft 8: 178–181.Google Scholar
  93. Scheuerl, T., S. Riss & C. P. Stelzer, 2011. Phenotypic effects of an allele causing obligate parthenogenesis in a rotifer. Journal of Heredity 102: 409–415.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schröder, T., 2001. Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). International Review of Hydrobiology 86: 635–660.CrossRefGoogle Scholar
  95. Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546: 291–306.CrossRefGoogle Scholar
  96. Schröder, T. & J. J. Gilbert, 2004. Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowding. Functional Ecology 18: 458–466.CrossRefGoogle Scholar
  97. Schröder, T. & E. J. Walsh, 2010. Genetic differentiation, behavioural reproductive isolation and mixis cues in three sibling species of monogonont rotifers. Freshwater Biology 55: 2570–2584.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Schröder, T., S. Howard, L. Arroyo & E. J. Walsh, 2007. Sexual reproduction and diapause of Hexarthra sp. (Rotifera) in short-lived Chihuahuan Desert ponds. Freshwater Biology 52: 1033–1042.CrossRefGoogle Scholar
  99. Segers, H., 1995. Rotifera. Volume 2: The Lecanidae (Monogononta). SPB Academic Publishing BV, Amsterdam.Google Scholar
  100. Segers, H., 1996. The biogeography of littoral Lecane Rotifera. Hydrobiologia 323: 169–197.CrossRefGoogle Scholar
  101. Segers, H., 2001. Zoogeography of the Southeast Asian Rotifera. Hydrobiologia 446/447: 233–246.CrossRefGoogle Scholar
  102. Segers, H., 2003. A biogeographical analysis of rotifers of the genus Trichocerca Lamarck, 1801 (Trichocercidae, Monogononta, Rotifera), with notes on taxonomy. Hydrobiologia 500: 103–114.CrossRefGoogle Scholar
  103. Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.CrossRefGoogle Scholar
  104. Segers, H. & W. De Smet, 2008. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity and Conservation 17: 303–316.CrossRefGoogle Scholar
  105. Serra, M. & T. W. Snell, 2009. Sex loss in monogonont rotifers. In Schön, I., K. Martens & P. van Dijk (eds), Lost Sex: The Evolutionary Biology of Parthenogenesis. Springer Science + Business Media B.V, Dordrecht: 281–294.CrossRefGoogle Scholar
  106. Serra, M., T. W. Snell & C. E. King, 2004. The timing of sex in cyclically parthenogenetic rotifers. In Moya, A. & E. Font (eds), Evolution from Molecules to Ecosystems. Oxford University Press, Oxford: 135–146.Google Scholar
  107. Serra, M., E. Aparici & M. J. Carmona, 2008. When to be sexual: sex allocation theory and population density-dependent induction of sex in cyclical parthenogens. Journal of Plankton Research 30: 1207–1214.CrossRefGoogle Scholar
  108. Serra, M., H. A. Smith, J. S. Weitz & T. W. Snell, 2011. Analysing threshold effects in the sexual dynamics of cyclically parthenogenetic rotifer populations. Hydrobiologia 662: 121–130.CrossRefGoogle Scholar
  109. Serrano, L., M. Serra & M. R. Miracle, 1989. Size variation in Brachionus plicatilis resting eggs. Hydrobiologia 186/187: 381–386.CrossRefGoogle Scholar
  110. Shiel, R. J., J. D. Green & L. W. Tan, 2001. Microfaunal and resting-stage heterogeneity in ephemeral pools, upper River Murray floodplain, Australia. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 27: 3738–3741.Google Scholar
  111. Smith, H. A. & T. W. Snell, 2012. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. Journal of Evolutionary Biology 25: 2501–2510.PubMedCrossRefGoogle Scholar
  112. Snell, T. W., 2011. A review of the molecular mechanisms of monogonont rotifer reproduction. Hydrobiologia 662: 89–97.CrossRefGoogle Scholar
  113. Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313/314: 231–247.CrossRefGoogle Scholar
  114. Snell, T. W., B. E. Burke & S. D. Messur, 1983. Size and distribution of resting eggs in a natural population of the rotifer Brachionus plicatilis. Gulf Research Reports 7: 285–287.CrossRefGoogle Scholar
  115. Snell, T. W. & C. E. King, 1977. Amphoteric reproduction in Asplanchna girodi. Archiv für Hydrobiologie, Beiheft 8: 182–183.Google Scholar
  116. Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C.-P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.CrossRefGoogle Scholar
  117. Stelzer, C.-P., J. Schmidt, A. Wiedlroither & S. Riss, 2010. Loss of sexual reproduction and dwarfing in a small metazoan. PLoS One 5: e12854.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stemberger, R. S., 1976. Notholca laurentiae and N. michiganensis, new rotifers from the Laurentian Great Lakes region. Journal of the Fisheries Research Board of Canada 33: 2814–2818.CrossRefGoogle Scholar
  119. Van Geel, B., 1998. Are the resting eggs of the rotifer Hexarthra mira (Hudson 1871) the modern analogs of Schizosporis reticulatus Cookson and Dettmann 1959? Palynology 22: 83–87.CrossRefGoogle Scholar
  120. Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008. Any way the wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.CrossRefGoogle Scholar
  121. Wallace, R. L., 1977. Distribution of sessile rotifers in an acid bog pond. Archiv für Hydrobiologie 79: 478–505.Google Scholar
  122. Wallace, R. L., 2002. Rotifers: exquisite metazoans. Integrative and Comparative Biology 42: 660–667.PubMedCrossRefGoogle Scholar
  123. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Volume 1: Biology, Ecology and Systematics, 2nd ed. Backhuys Publishers, Leiden.Google Scholar
  124. Wallace, R. L., T. Snell & H. A. Smith, 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s Freshwater Invertebrates, Vol. I., Ecology and General Biology Elsevier, Waltham, MA: 225–271.CrossRefGoogle Scholar
  125. Walsh, E. J., H. A. Smith & R. L. Wallace, 2014. Rotifers of temporary waters. International Review of Hydrobiology 99: 3–19.CrossRefGoogle Scholar
  126. Weisse, T., 2006. Biodiversity of freshwater microorganisms – achievement, problems, and perspectives. Polish Journal of Ecology 54: 633–652.Google Scholar
  127. Wesenberg-Lund, C., 1930. Contributions to the biology of the Rotifera. II. Periodicity and sexual periods. Mémoires de l’Académie Royale des Sciences et des Lettres de Danemark, Copenhagen, 9, Ser. II: 1–230.Google Scholar
  128. Wurdak, E., J. J. Gilbert & R. Jagles, 1977. Resting egg ultrastructure and formation of the shell in Asplanchna sieboldi and Brachionus calyciflorus. Archiv für Hydrobiologia, Beiheft 8: 298–302.Google Scholar
  129. Wurdak, E., J. J. Gilbert & R. Jagles, 1978. Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboidi. Transactions of the American Microscopical Society 97: 49–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA
  2. 2.Centre for Ecology & HydrologyEdinburghScotland, UK
  3. 3.Department of BiologyRipon CollegeRiponUSA

Personalised recommendations