, Volume 775, Issue 1, pp 51–67 | Cite as

An ecological model for the Scheldt estuary and tidal rivers ecosystem: spatial and temporal variability of plankton

  • J. NaithaniEmail author
  • B. de Brye
  • E. Buyze
  • W. Vyverman
  • V. Legat
  • E. Deleersnijder
Primary Research Paper


This paper presents the formulation, structure, and governing equations of an ecosystem model developed for the Scheldt estuary and the tidal river network. The model has twelve state variables: nitrate, ammonium, phosphate, dissolved silica, freshwater and marine phytoplankton (chlorophytes and diatoms), freshwater zooplankton (ciliates, rotifers, and copepods), and benthic detritus. The ecological model is coupled to the 1-D tidal resolving version of the Second-generation Louvain-la-neuve ice-ocean Model (SLIM) ( The model successfully simulates the observed longitudinal and seasonal variation of plankton in the Scheldt estuary. The phytoplankton production in the estuary is governed by temperature, underwater available light, turbidity, nutrients, and discharge. Of all these factors, discharge seems to be dominant. High discharge increases the turbidity in the water column and thus reduces the underwater light, while low discharge means decreased nutrients. The marine phytoplankton species were present as far to the upstream limits of the brackish waters, with diatoms dominating in the spring and chlorophytes in early summer. The freshwater phytoplankton are seen from late spring to summer. Freshwater zooplankton followed the evolution of freshwater phytoplankton.


Ecological model SLIM Scheldt estuary Tidal river Chlorophytes Diatoms Ciliates Rotifers Copepods 



The author Jaya Naithani is grateful to Dr Klaas Deneudt for all the help provided in locating the data. Thanks are also due to the two reviewers for their careful, critical, and constructive comments. This research was conducted in the framework of the Interuniversity Attraction Pole TIMOTHY (IAP VI. 13), funded by Belgian Science Policy (BELSPO), and the project “Taking up the challenge of multi-scale marine modelling”, which is funded by the Communauté Fran?aise de Belgique under contract ARC10/15-028 (Actions de recherche concertées) with the aim of developing and applying SLIM. Computational resources were provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipment de Calcul Intensif en Féderation Wallonie Bruxelles (CECI) funded by the Fond de la Recherche Scientifique de Belgique (FRS-FNRS).


  1. Admiraal, W., 1977. Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Marine Biology 39: 1–9.CrossRefGoogle Scholar
  2. Arndt, S., J.-P. Vanderborgth & P. Regnier, 2007. Diatom growth response to physical forcing in a macrotidal estuary: coupling hydrodynamics, sediment transport and biogeochemistry. Journal of Geophysical Research 12. doi: 10.1029/2006JC003581.
  3. Arndt, S., P. Regnier & J.-P. Vanderborgth, 2009. Seasonally-resolved nutrient export fluxes and fluxes and filtering capacities in a macro tidal estuary. Journal of Marine Systems 78: 42–58.CrossRefGoogle Scholar
  4. Arndt, S., G. Lacroix, N. Gypens, P. Regnier & C. Lancelot, 2011. Nutrient dynamics and phytoplankton development along the estuary-coastal zone continuum: a model study. Journal of Marine Systems 84: 49–66.CrossRefGoogle Scholar
  5. Baeyens, W., B. van Eck, C. Lambert, R. Wollast & L. Goeyens, 1998. General description of the Scheldt estuary. Hydrobiologia 366: 1–14.CrossRefGoogle Scholar
  6. Baretta-Bekker, J. G., J. W. Baretta, M. J. Latuhihin, X. Desmit, & T. C. Prins, 2009. Description of the long-term (1991–2005) temporal and spatial distribution of phytoplankton carbon biomass in the Dutch North sea. Journal of Sea Research 61: 50–59.CrossRefGoogle Scholar
  7. Blauw, A. N., H. F. J. Los, M. Bokhorst & P. L. A. Erftemeijer, 2009. GEM: a genetic ecological model for estuaries and coastal waters. Hydrobiologia 618: 175–198.CrossRefGoogle Scholar
  8. Brion, N., M. G. I. Andersson, M. Elskens, C. Diaconu, W. Baeyens, F. Dehairs & J. J. Middelburg, 2008. Nitrogen cycling, retention and export in a eutrophic temperate macrotidal estuary. Marine Ecological Progress Series 357: 87–99.CrossRefGoogle Scholar
  9. Carbonnel, V., M. Lionard, K. Muylaert & L. Chou, 2009. Dynamics of dissolved and biogenic silica in the freshwater reaches of a macrotidal estuary (The Scheldt, Belgium). Biogeochemistry 96: 49–72.CrossRefGoogle Scholar
  10. Chen, M. S., S. Wartel, B. Van Eck & D. V. Maldegem, 2005. Suspended matter in the Scheldt Estuary. Hydrobiologia 540: 79–104.CrossRefGoogle Scholar
  11. Cloern, J. E., 1987. Turbidity as a control on phytoplankton biomass and productivity. Continental Shelf Research 7: 1367–1381.CrossRefGoogle Scholar
  12. de Brye, B., A. de Brauwere, O. Gourgue, T. Kärnä, J. Lamprechts, R. Comblen & E. Deleersnijder, 2010. A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coastal Engineering. doi: 10.1016/j.coastaleng.2010.04.001.
  13. Desmit, X., J. P. Vanderborght, P. Regnier & R. Wollast, 2005. Control of phytoplankton production by physical forcing in a strongly tidal, well-mixed estuary. Biogeosciences 2: 205–218.CrossRefGoogle Scholar
  14. Di Toro, D. M., 1980. Applicability of cellular equilibrium and monod theory to phytoplankton growth kinetics. Ecological Modelling 8: 201–218.CrossRefGoogle Scholar
  15. Di Toro, D. M., D. J. O’Connor & R. V. Thomann, 1971. A Dynamic Model of the Phytoplankton Population in the Sacramento-San Joaquin Delta. Advances in Chemistry Series, Non-equilibrium Systems in Natural Water Chemistry, Vol. 106. American Chemical Society, Washington, DC: 131–180.Google Scholar
  16. Dijkman, N. & J. C. Kromkamp, 2006, Photosynthesis characteristics of the phytoplankton in the Scheldt estuary: community and single-cell fluorescence measurements. European Journal of Phycology 41: 425–434.CrossRefGoogle Scholar
  17. Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70: 1063-1085.Google Scholar
  18. Flameling, I. A. & J. Kromkamp, 1994. Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. Journal of Plankton Research 16: 1781–1791.CrossRefGoogle Scholar
  19. Fransz, H. G. & J. H. G. Verhagen, 1985. Modelling research on the production of phytoplankton in the southern bight of the north sea in relation to riverborne nutrient loads. Netherlands Journal of Sea Research 19: 241–250.CrossRefGoogle Scholar
  20. Gazeau, F., J.-P. Gattuso, J. J. Middelburg, N. Brion, L.-S. Schiettecatte, M. Frankignouille & A. V. Borges, 2005. Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt Estuary). Estuaries 28: 868–883.CrossRefGoogle Scholar
  21. Goosen, N. K., P. van Rijswijk & U. Brockmann, 1995. Comparison of heterotrophic bacterial production rates in early spring in the turbid estuaries of the Scheldt and the Elbe. Hydrobiologia 311: 31–42.CrossRefGoogle Scholar
  22. Gourge, O., 2011. Finite element modelling of sediment dynamics in the Scheldt. PhD Thesis, UCL: p. 151.Google Scholar
  23. Gourge, O., W. Baeyens, M. S. Chen, A. de Brauwere, B. de Brye, E. Deleersnijder, M. Elskens & V. Legat, 2013. A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network. Journal Marine Systems 128: 27–39.CrossRefGoogle Scholar
  24. Griffin, S. L., M. Herzfeld, & D. P. Hamilton, 2001. Modelling the impact of zooplankton on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia. Ecological Engineering 16: 373–394.CrossRefGoogle Scholar
  25. Gypens, N., E. Delhez, A. Vanhoutte-Brunier, S. Burton, V. Thieu, P. Passy, Y. Liu, J. Callens, V. Rousseau & C. Lancelot, 2012. Modelling phytoplankton succession and nutrient transfer along the Scheldt estuary (Belgium, The Netherlands). Journal of Marine Systems. doi: 10.1016/j.jmarsys.2012.10.006.
  26. Hofmann, A. F., K. Soetaert & J. J. Middelburg, 2008. Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5: 981–1006.CrossRefGoogle Scholar
  27. Ignatiades, L. & T. J. Smayda, 1970. Autecological studies on the marine diatom Rhizosolenia fragilissima Bergon. I. The influence of light, temperature and salinity. Journal of Phycology 6: 332–333.Google Scholar
  28. Ivlev, V. S., 1945. The biological productivity of waters. USP Sovereign Biology 19: 98–120.Google Scholar
  29. Kishi, M. J., M. Kashiwai, D. M. Ware, A. M. Megrey, D. L. Eslinger, F. E. Werner, et al., 2007. NEMURO-a lower trophic level model for the North Pacific marine ecosystem. Ecological Modelling 202: 12–25.CrossRefGoogle Scholar
  30. Klepper, O., M. W. M. van der Tol, H. Scholten & P. M. J. Herman, 1994. SMOSES: a simulation model for the Oosterschelde ecosystem. Hydrobiologia 282–283: 437–451.CrossRefGoogle Scholar
  31. Koeman, R. P. T., C. J. E. Brochard, K. Fockens, G. L. Verweij & P. Esselink, 2004. Biomonitoring van Fytoplankton in de Nederlandse Zoute Wateren 2003 Kite Diagrammen, Koeman en Bijkerk, Ecologisch onderzoek en advies, Haren.Google Scholar
  32. Kremer, J. N. & S. W. Nixon, 1978. A Coastal Marine Ecosystem: Simulation and Analysis. Ecological Studies, Vol. 24. Springer, Heidelberg: p. 217.Google Scholar
  33. Kromkamp, J. C. & J. Peene, 1995. Possibility of net phytoplankton primary production in the turbid Scheldt estuary (SW Netherlands). Marine Ecology Progress Series 121: 249–259.CrossRefGoogle Scholar
  34. Kromkamp, J. C. & J. Peene, 2005. Changes in phytoplankton biomass and primary production between 1991 and 2001 in the Westerschelde estuary (Belgium/The Netherlands). Hydrobiologia 540: 117–126.CrossRefGoogle Scholar
  35. Langdon, C., 1993. The significance of respiration production measurements based on both carbon and oxygen. In Li, W. K. W. & S. Y. Maestrini (eds), Measurement of Primary Production from the Molecular to the Global Scale, Vol. 197. ICESS MSS, International Council for the Exploration of the Sea, Copenhagen: pp. 69–78.Google Scholar
  36. Laws, E. & J. Caperon, 1976. Carbon and nitrogen metabolism by Monochrysis lutheri: measurement of growth-rate dependent respiration rates. Marine Biology 36: 85–97.CrossRefGoogle Scholar
  37. Lingeman-Kosmerchock, M., 1978. Phytoplankton cells, their nutrient contents, mineralisation and sinking rates. Delft Hydraulics Laboratory Report R1310, Delft.Google Scholar
  38. Lionard, M., K. Muylaert, D. van Gansbeke & W. Vyverman, 2005a. Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde River Estuary (Belgium/The Netherlands). Hydrobiologia 540: 105–115.CrossRefGoogle Scholar
  39. Lionard, M., F. Azémar, S. Boulêtreau, K. Muylaert, M. Tackx & W. Vyverman, 2005b. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde Estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 64: 764–774.CrossRefGoogle Scholar
  40. Lionard, M., K. Muylaert, M. Tackx & W. Vyverman, 2008a. Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science 76: 809–817.CrossRefGoogle Scholar
  41. Lionard, M., K. Muylaert, A. Hanoutti, T. Maris, M. Tackx & W. Vyverman, 2008b. Inter-annual variability in phytoplankton summer blooms in the freshwater tidal reaches of the Schelde estuary (Belgium). Estuarine, Coastal and Shelf Science 79: 694–700.CrossRefGoogle Scholar
  42. Los, F. J., 1982. Mathematical simulation of algae blooms by the model BLOOM II. Delft Hydraulics Laboratory Publication No. 316, Delft.Google Scholar
  43. Mague, T. H., E. Friberg, D. J. Hughes, & I. Morris, 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnology and Oceanography 25: 262–279.CrossRefGoogle Scholar
  44. Meire, P., T. Ysebaert, S. van Damme, E. V. den Bergh, T. Maris & E. Struyf, 2005. The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540: 1–11.CrossRefGoogle Scholar
  45. Montagnes, J. S., & D. J. Franklin, 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnology & Oceanography 46: 2008–2018.CrossRefGoogle Scholar
  46. Muylaert, K. & K. Sabbe, 1999. Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/The Netherlands) and the Gironde (France). Journal of Marine Systems 22: 133–149.CrossRefGoogle Scholar
  47. Muylaert, K., A. Van Kerckvoorde, W. Vyverman & K. Sabbe, 1997. Structural characteristics of phytoplankton assemblages in tidal and non-tidal freshwater systems: a case study from the Schelde basin, Belgium. Freshwater Biology 38: 263–276.CrossRefGoogle Scholar
  48. Muylaert, K., K. Sabbe & W. Vyverman, 2000a. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science 50: 673–687.CrossRefGoogle Scholar
  49. Muylaert, K., R. V. Mieghem, K. Sabbe, M. Tackx & W. Vyverman, 2000b. Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiologia 432: 25–36.CrossRefGoogle Scholar
  50. Muylaert, K., J. Van Wichelen, K. Sabbe & W. Vyverman, 2001. Effects of freshets on phytoplankton dynamics in a freshwater tidal estuary (Schelde, Belgium). Archiv für Hydrobiologie 150: 269–288.Google Scholar
  51. Muylaert, K., M. Tackx & W. Vyverman, 2005a. Phytoplankton growth rates in the freshwater tidal reaches of the Schelde estuary (Belgium) estimated using a simple light-limited primary production model. Hydrobiologia 540: 127–140.CrossRefGoogle Scholar
  52. Muylaert, K., R. Dasseville, L. De Brabandere, F. Dehairs & W. Vyverman, 2005b. Dissolved organic carbon in the freshwater tidal reaches of the Schelde estuary. Estuarine, Coastal and Shelf Science 64: 591–600.CrossRefGoogle Scholar
  53. Muylaert, K., K. Sabbe & W. Vyverman, 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 82: 335–340.CrossRefGoogle Scholar
  54. Parsons, T. R., R. J. Le Brasseur & J. D. Fulton, 1967. Some observations on the dependence of zooplankton grazing on cell size and concentration of phytoplankton blooms. Journal of Oceanographical Society of Japan 23: 10–17.Google Scholar
  55. Parsons, T. R., M. Takahashi & B. Hargrave, 1984. Biological Oceanographic Processes, 3rd edn. Pergamon Press, Oxford.Google Scholar
  56. RWS, 2015. Ministerie van Verkeer en Waterstaat.
  57. ScheldtMonitor, Onderzoek Milieu-effecten Sigmaplan, 2015. Multidisciplinaire studie rond het estuariene milieu van de Zeeschelde. Ecosystem Management Research Group, UA; Protistology and Aquatic Ecology, Ugent; Laboratoire d’Ecologie des Hydrosystèmes, Université Paul Sabatier – France, i.o.v. Vlaamse Overheid; Beleidsdomein Mobiliteit en Openbare Werken; Waterwegen en zeekanaal NV. Retrieved from
  58. Smetacek, V. S., 1980. Zooplankton standing stock, copepod faecal pellets and particulate detritus in Kiel Bight. Marine Biology 63: 1–11.CrossRefGoogle Scholar
  59. Soetaert, K. & P. M. J. Herman, 1995. Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES). Hydrobiologia 311: 247–266.CrossRefGoogle Scholar
  60. Soetaert, K., P. M. J. Herman & J. Kromkamp, 1994. Living in twilight: estimating net phytoplankton growth in the Westerschelde estuary (The Netherlands) by means of an ecosystem model (MOSES). Journal of Plankton Research 16: 1277–1301.CrossRefGoogle Scholar
  61. Tackx, M. L. M., 1987. Grazing door zooplankton in de Oosterschelde. PhD Thesis, Lab. voor ecologie en systematiek, Vrije Universiteit Brussel.Google Scholar
  62. Tackx, M. L. M., N. de Pauw, R. van Mieghem, F. Azemar, A. Hannouti, S. van Damme, F. Fiers, N. Daro & P. Meire, 2004. Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26: 133–141.CrossRefGoogle Scholar
  63. Vanderborght, J. P., R. Wollast, M. Loijens & P. Regnier, 2002. Application of a transport-reaction model to the estimation of biomass fluxes in the Scheldt estuary. Biogeochemistry 59: 207–237.CrossRefGoogle Scholar
  64. Vanderborght, J. P., I. M. Folmer, D. R. Agiuilera, T. Unhrenholdt & P. Regnier, 2007. Reactive-transport modelling of C, N, and O2 in a river–estuarine–coastal zone system: application to the Scheldt estuary. Marine Chemistry 106: 92–110.CrossRefGoogle Scholar
  65. Van der Zee, C., N. Roevros & L. Chou, 2007. Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Marine Chemistry 106: 76–91.CrossRefGoogle Scholar
  66. Van Rijn, L. C., 2010. Tidal phenomena in the Scheldt Estuary. Report, Deltares: p. 105.Google Scholar
  67. Waterbase, 2015. Ministerie van Verkeer en Waterstaat.
  68. Weger, H. G., R. Herzig, P. G. Falkowski & D. H. Turpin, 1989. Respiratory losses in the light in a marine diatom: measurements by short-term mass spectrometry. Limnology and Oceanography 34: 1153–1161.CrossRefGoogle Scholar
  69. Winterwerp, J.C., Z. Bing Wang, T. van der Kaaij, K. Verelst, A. Bijlsma, Y. Meersschaut, M. Sas, 2006. Flow velocity profiles in the Lower Scheldt estuary. Ocean Dynamics 56: 284–294.CrossRefGoogle Scholar
  70. Wroblewski, J. S., 1977. A model of phytoplankton plume formation during variable Oregon upwelling. Journal of Marine Research 35: 357–394.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Naithani
    • 1
    Email author
  • B. de Brye
    • 1
  • E. Buyze
    • 2
  • W. Vyverman
    • 2
  • V. Legat
    • 1
  • E. Deleersnijder
    • 3
    • 4
  1. 1.Institute of Mechanics, Materials and Civil Engineering (IMMC)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Section Protistology and Aquatic Ecology, Department of BiologyUniversity of GhentGhentBelgium
  3. 3.Institute of Mechanics, Materials and Civil Engineering (IMMC) & Earth and Life Institute (ELI)Université catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Delft Institute of Applied Mathematics (DIAM)Delft University of TechnologyDelftThe Netherlands

Personalised recommendations