Advertisement

Hydrobiologia

, Volume 773, Issue 1, pp 225–240 | Cite as

The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds

  • Friedrich Wolfgang KeppelerEmail author
  • Danielle Ajala Cruz
  • Guilherme Dalponti
  • Roger Paulo Mormul
Primary Research Paper

Abstract

Trophic interaction between contiguous habitats is an understudied area despite their ecological importance. We tested four hypotheses related to the visit of foraging birds in temporary ponds inhabited by fish: the local characteristics of ponds influence the (1) abundance and (2) composition of foraging birds; (3) the number of foraging bird visits increases in higher fish abundance; and (4) pond characteristics lead to a non-random spatial structure of fish assemblage. We studied 18 temporary ponds in the floodplain area of Pantanal (center-west Brazil), where we measured environmental variables (pond size, depth, macrophyte coverage, and forest canopy coverage), recorded the number of foraging birds and sampled fish. Foraging birds’ abundance and composition were mainly influenced by forest canopy coverage and pond size, corroborating our first and second hypotheses. The hypotheses 3 and 4 were rejected. Fish abundance was not correlated with higher number of visits of foraging birds and fish distribution was random. Local environmental variables did not affect significantly fish richness and composition. Our results suggest that the abundance of foraging birds and fish presence are determined by different assembly processes (deterministic vs. random), which may limit ponds selection by birds due to the uncertainty in fish distribution and ephemeral nature of temporary ponds.

Keywords

Intermittent wetland Predator–prey dynamic Metacommunity Pantanal 

Notes

Acknowledgment

This study was designed and developed during the Pantanal Ecology course (Ecologia do Pantanal—ECOPAN) of 2013. Thus, we would like to thank all organizers, professors, sponsors (UFMS, MMX, Fundect, Capes, CNPq, Instituto Homem Pantaneiro, Embrapa Pantanal, PPG Ecologia e Conservação), and participants of the ECOPAN 2013 for field logistics, suggestions, and team play. We also thank Elaine Corrêa for all help in the field work and Paulo Henrique Araujo and Francisco Severo Neto for bird and fish identification. The first author would like to thank CAPES/UFRGS for the master’s degree scholarship, and CNPq/UEM and CAPES/Texas A&M for PhD scholarships. We also thank the editor and the anonymous reviewers for improving the manuscript with comments and suggestions.

Supplementary material

10750_2016_2705_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Antas, P. T. Z. & H. Palo Jr., 2004. Pantanal—Guia de aves. Sesc. http://www.avespantanal.com.br/paginas/index.htm].
  2. Amundsen, P. A., H. M. Gabler & F. J. Staldvik, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data—modification of the Costello (1990) method. Journal of Fish Biology 48: 607–614.Google Scholar
  3. Baber, M. J., D. L. Childers, K. J. Babbitt & D. H. Anderson, 2002. Controls on fish distribution and abundance in temporary wetlands. Canadian Journal of Fisheries and Aquatic Sciences 59: 1441–1450.CrossRefGoogle Scholar
  4. Bancroft, G. T., D. E. Gawlik & K. Rutchey, 2002. Distribution of wading birds relative to veg-etation and water depths in the northern Everglades of Florida, USA. Waterbirds 25: 265–277.CrossRefGoogle Scholar
  5. Barton, K., 2015. MuMIn: Multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn].
  6. Bauer, S. & B. J. Hoye, 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344: 1242552.CrossRefPubMedGoogle Scholar
  7. Bellay, S., D. P. Lima, R. M. Takemoto & J. L. Luque, 2011. A host-endoparasite network of Neotropical marine fish: are there organizational patterns? Parasitology 138: 1945–1952.CrossRefPubMedGoogle Scholar
  8. Bellmore, J. R., C. V. Baxter & P. J. Connolly, 2015. Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic. Ecology 96: 274–283.CrossRefPubMedGoogle Scholar
  9. Benoit-Bird, K. J., B. C. Battaile, S. a. Heppell, B. Hoover, D. Irons, N. Jones, K. J. Kuletz, C. A. Nordstrom, R. Paredes, R. M. Suryan, C. M. Waluk & A. W. Trites, 2013. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. Plos One 8: e53348.Google Scholar
  10. Bergmann, F. B., H. L. Amaral, D. P. Pinto, C. C. Chivittz & A. M. Tozetti, 2013. Foraging activity of the snail kite, Rostrhamus sociabilis (Aves: Accipitridae) in wetlands of southern Brazil. Brazilian Journal of Biology 73: 245–252.CrossRefGoogle Scholar
  11. Bicudo, J. E. P. W., W. A. Buttemer, M. A. Chappell, J. T. Pearson & C. Bech, 2010. Ecological and environmental physiology of birds. Oxford University Press, Oxford.CrossRefGoogle Scholar
  12. Bini, E., 2014. Birds of Brazil—Pantanal. HP Publicações.Google Scholar
  13. Bone, Q. & R. H. Moore, 2008. Biology of Fishes. Taylor & Francis, New York.Google Scholar
  14. Boschilia, S. M., E. F. Oliveira & S. M. Thomaz, 2008. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical floodplain. Oecologia 156: 203–214.CrossRefPubMedGoogle Scholar
  15. Britski, H., K. Z. Silimon & B. S. Lopes, 2007. Peixes do Pantanal: manual de identificação. Embrapa, Brasília.Google Scholar
  16. Brodmann, P. A., H. U. Reyer & B. Baer, 1997. The relative importance of habitat structure and of prey characteristics for the foraging success of water pipits (Anthus spinoletta). Ethology 103: 222–235.CrossRefGoogle Scholar
  17. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: an information theoretic approach. Springer, New York.Google Scholar
  18. Butler, R. W., 1994. Population regulation of wading ciconiiform birds. Colonial Waterbirds 17: 189–199.CrossRefGoogle Scholar
  19. Butler, S. J. & S. Gillings, 2004. Quantifying the effects of habitat structure on prey detectability and accessibility to farmland birds. Ibis 146: 123–130.CrossRefGoogle Scholar
  20. Caruso, T., Y. Chan, D. C. Lacap, M. C. Y. Lau, C. P. McKay & S. B. Pointing, 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. The ISME Journal 5: 1406–1413.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cooper, W. E. & W. G. Frederick, 2007. Optimal time to emerge from refuge. Biological Journal of the Linnean Society 91: 375–382.CrossRefGoogle Scholar
  22. Costa, W. J. E. M., 1998. Phylogeny and classification of Rivulidae revisited: origin and evolution of annualism and miniaturization in rivulid fishes (Cyprinodontiformes: Aplocheiloidei). Journal of Comparative Biology 3: 33–94.Google Scholar
  23. Costello, M. J., 1990. Predator feeding strategy and prey importance: a new graphical analysis. Journal of Fish Biology 36: 261–263.CrossRefGoogle Scholar
  24. Dallas, T., 2014. Metacom: an R package for the analysis of metacommunity structure. Ecography 37: 402–405.CrossRefGoogle Scholar
  25. Dallas, T., 2015. Metacom: analysis of the “elements of metacommunity structure.” http://cran.r-project.org/package=metacom].
  26. Donatelli, R. J., S. R. Posso & M. C. B. Toledo, 2014. Distribution, composition and seasonality of aquatic birds in the Nhecolândia sub-region of South Pantanal, Brazil. Brazilian Journal of Biology 74: 844–853.CrossRefGoogle Scholar
  27. Eastman, J., 1999. Birds of lake pond and marsh: water and wetland birds of eastern North America. Stackpole Books, Mechanicsburg.Google Scholar
  28. Erize, F., J. R. R. Mata & M. Rumboll, 2006. Birds of South America. Princeton University Press, Oxford.Google Scholar
  29. Eveleigh, E. S., K. S. McCann, P. C. McCarthy, S. J. Pollock, C. J. Lucarotti, B. Morin, G. A McDougall, D. B. Strongman, J. T. Huber, J. Umbanhowar & L. D. B. Faria, 2007. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proceedings of the National Academy of Sciences of the United States of America 104: 16976–16981.Google Scholar
  30. Fernandes, C. C., 1997. Lateral migration of fishes in Amazon floodplains. Ecology of Freshwater Fish 6: 36–44.CrossRefGoogle Scholar
  31. Fernandes, I. M., F. A. Machado & J. Penha, 2010. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources. Neotropical Ichthyology 8: 289–298.CrossRefGoogle Scholar
  32. Fortin, D., H. L. Beyer, M. S. Boyce, D. W. Smith, T. Duchesne & J. S. Mao, 2005. Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86: 1320–1330.CrossRefGoogle Scholar
  33. Froneman, A., M. J. Mangnall, R. M. Little & T. M. Crowe, 2001. Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity & Conservation 10: 251–270.CrossRefGoogle Scholar
  34. Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  35. Gawlik, D. E., 2002. The effects of prey availability on the numerical response of wading birds. Ecological Monographs 72: 329–346.CrossRefGoogle Scholar
  36. Gibb, H. & C. L. Parr, 2013. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. Plos One 8: e64005.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gonçalves, H. C., M. A. Mercante, E. T. Santos, J. R. Godoy, G. Petts & J. Salo, 2011. Hydrological cycle. Brazilian Journal of Biology 71: 241–253.Google Scholar
  38. Gotelli, N. J. & A. M. Ellison, 2004. A Primer of Ecological Statistics. Sinauer Associates, Sunderland.Google Scholar
  39. Gotelli, N. J. & G. L. Entsminger, 2001. Swap and fill algorithms in null model analysis: rethinking the Knight’s Tour. Oecologia 129: 281–291.CrossRefGoogle Scholar
  40. Gotelli, N. J. & D. J. McCabe, 2002. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83: 2091–2096.Google Scholar
  41. Goulding, M., M. L. Carvalho & E. G. Ferreira, 1988. Rio Negro, Rich Life in Poor Water. SPB Academic Publishing, The Hague.Google Scholar
  42. Gunnarsson, B., 1992. Fractal dimension of plants and body size distribution in spiders. Functional Ecology 6: 636–641.CrossRefGoogle Scholar
  43. Haas, K., U. Köhler, S. Diehl, P. Köhler, S. Dietrich, S. Holler, A. Jaensch, M. Niedermaier & J. Vilsmeier, 2007. Influence of fish on habitat choice of water birds: a whole system experiment. Ecology 88: 2915–2925.CrossRefPubMedGoogle Scholar
  44. Hafner, H., 1997. Ecology of wading birds. Colonial Waterbirds 20: 115–120.CrossRefGoogle Scholar
  45. Halekoh, U. & S. Højsgaard, 2014. A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest. Journal of Statistical Software 59: 1–32.CrossRefGoogle Scholar
  46. Hammond, J. I., B. Luttbeg & A. Sih, 2007. Predator and prey space use: dragonflies and tadpoles in an interactive game. Ecology 88: 1525–1535.CrossRefPubMedGoogle Scholar
  47. Henriques-Silva, R., Z. Lindo & P. R. Peres-Neto, 2013. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94: 627–639.CrossRefPubMedGoogle Scholar
  48. HilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine & M. M. Mayfield, 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227–248.CrossRefGoogle Scholar
  49. Hixon, M. A. & B. A. Menge, 1991. Species diversity: prey refuges modify the interactive effects of predation and competition. Theoretical Population Biology 39: 178–200.CrossRefGoogle Scholar
  50. Hubbel, S. P. & R. B. Foster, 1986. Biology, chance and history and the structure of tropical rain forest tree communities. In Diamond, J. M. & T. J. Case (eds), Community Ecology. Harper & Row, New York: 314–329.Google Scholar
  51. Jakubas, D. & B. Manikowska, 2011. The response of grey herons Ardea cinerea to changes in prey abundance. Bird Study 58: 487–494.CrossRefGoogle Scholar
  52. Jocque, M., B. Vanschoenwinkel & L. Brendonck, 2010. Anostracan monopolisation of early successional phases in temporary waters? Fundamental and Applied Limnology/Archiv für Hydrobiologie 176: 127–132.CrossRefGoogle Scholar
  53. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  54. Junk, W. J., C. J. Silva, C. N. Cunha & K. M. Wantzen, 2011. The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia.Google Scholar
  55. Kameda, K., K. Koba, S. Hobara, T. Osono & M. Terai, 2006. Pattern of natural 15 N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen. Hydrobiologia 567: 69–86.CrossRefGoogle Scholar
  56. Keppel, G., Y. M. Buckley & H. P. Possingham, 2010. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology 98: 87–95.CrossRefGoogle Scholar
  57. Kloskowski, J. & A. Trembaczowski, 2015. Fish reduce habitat coupling by a waterbird: evidence from combined stable isotope and conventional dietary approaches. Aquatic Ecology 49: 21–31.CrossRefGoogle Scholar
  58. Koenker, R., 2015. quantreg: Quantile regression. R package version 5.11. http://CRAN.R-project.org/package=quantreg].
  59. Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2014. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592–599.CrossRefGoogle Scholar
  60. Kushlan, J. A., 1976. Wading bird predation in a seasonally fluctuating pond. The Auk 93: 464–476.Google Scholar
  61. Lanés, L. E. K., F. W. Keppeler & L. Maltchik, 2014. Abundance variations and life history traits of two sympatric species of Neotropical annual fish (Cyprinodontiformes : Rivulidae) in temporary ponds of southern Brazil. Journal of Natural History 48: 1971–1988.CrossRefGoogle Scholar
  62. Leibold, M. A. & G. M. Mikkelson, 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97: 237–250.CrossRefGoogle Scholar
  63. Lowe-Mcconnell, R., 1987. Ecological Studies in Tropical Fish Communities. Cambridge University Press, London/New York.CrossRefGoogle Scholar
  64. Magoulick, D. D. & R. M. Kobza, 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater Biology 48: 1186–1198.CrossRefGoogle Scholar
  65. Maly, E. J. & M. P. Maly, 1997. Predation, competition, and co-occurrences of Boeckella and Calamoecia (Copepoda: Calanoida) in Western Australia. Hydrobiologia 354: 41–50.CrossRefGoogle Scholar
  66. Master, T. L., J. K. Leiser, K. A. Bennett, J. K. Bretsch & H. J. Wolfe, 2005. Patch selection by snowy egrets. Waterbirds 28: 220–224.CrossRefGoogle Scholar
  67. McAbendroth, L., P. M. Ramsay, A. Foggo, S. D. Rundle & D. T. Bilton, 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290.CrossRefGoogle Scholar
  68. McCann, K. S., 2011. Food Webs. Princeton University Press, New Jersey.Google Scholar
  69. Mendonça, L. B., E. V. Lopes & L. Anjos, 2009. On the possible extinction of bird species in the Upper Paraná River floodplain, Brazil. Brazilian Journal of Biology 69: 747–755.CrossRefGoogle Scholar
  70. Morisita, M., 1971. Composition of the I-index. Researches on Population Ecology 13: 1–27.CrossRefGoogle Scholar
  71. Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences 98: 166–170.CrossRefGoogle Scholar
  72. Nakazawa, M. 2014. fmsb: Functions for medical statistics book with some demographic data. R package version 0.5.1. http://CRAN.R-project.org/package=fmsb.
  73. Nystrand, O. & A. Granström, 1997. Post-dispersal predation on Pinus sylvestris seeds by Fringilla spp: ground substrate affects selection for seed color. Oecologia 110: 353–359.CrossRefGoogle Scholar
  74. Oksanen, J., 2009. Ordination and analysis of dissimilarities: Tutorial with R and vegan. http://www.bio.utk.edu/fesin/msa2009/R/veganbird.pdf.
  75. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2009. Vegan: community ecology package. http://CRAN.R-project.org/package=vegan.
  76. Ortega, J. C. G., R. M. Dias, A. C. Petry, E. F. Oliveira & A. A. Agostinho, 2015. Spatio-temporal organization patterns in the fish assemblages of a neotropical floodplain. Hydrobiologia 745: 31–41.CrossRefGoogle Scholar
  77. Osorio, D., J. Terborgh, A. Alvarez, H. Ortega, R. Quispe, V. Chipollini & L. C. Davenport, 2011. Lateral migration of fish between an oxbow lake and an Amazonian headwater river. Ecology of Freshwater Fish 20: 619–627.CrossRefGoogle Scholar
  78. Pazin, V. F. V., W. E. Magnusson, J. Zuanon & F. P. Mendonça, 2006. Fish assemblages in temporary ponds adjacent to “terra-firme” streams in Central Amazonia. Freshwater Biology 51: 1025–1037.CrossRefGoogle Scholar
  79. Pérez-García, J. M., E. Sebastián-González, K. L. Alexander, J. A. Sánchez-Zapata & F. Botella, 2014. Effect of landscape configuration and habitat quality on the community structure of waterbirds using a man-made habitat. European Journal of Wildlife Research 60: 875–883.CrossRefGoogle Scholar
  80. Polacik, M. & M. Reichard, 2010. Diet overlap among three sympatric African annual killifish species Nothobranchius spp. from Mozambique. Journal of Fish Biology 77: 754–768.PubMedGoogle Scholar
  81. Polis, G. A. & K. O. Winemiller (eds), 1996. Food Webs: integration of Patterns and Dynamics. Chapman and Hall, New York.Google Scholar
  82. Powell, G. V. N., 1987. Habitat use by wading birds in a subtropical estuary: implications of hy-drography. The Auk 104: 740–749.Google Scholar
  83. Presley, S. J., C. L. Higgins & M. R. Willig, 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908–917.CrossRefGoogle Scholar
  84. Pyke, G. H., 1984. Optimal foraging theory: a critical review. Annual Review of Ecology Evolution and Systematics 15: 523–575.CrossRefGoogle Scholar
  85. Rasband, W.S., 2015. ImageJ. U. S. National Institutes of Health, Maryland. http://imagej.nih.gov/ij/.
  86. Ricklefs, R. E., 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1–15.CrossRefGoogle Scholar
  87. Rooney, N., K. S. McCann & J. C. Moore, 2008. A landscape theory for food web architecture. Ecology Letters 11: 867–881.CrossRefPubMedGoogle Scholar
  88. Rosindell, J., S. P. Hubbell, F. He, L. J. Harmon & R. S. Etienne, 2012. The case for ecological neutral theory. Trends in Ecology and Evolution 27: 203–208.CrossRefPubMedGoogle Scholar
  89. Salewski, V. & B. Bruderer, 2007. The evolution of bird migration–A synthesis. Naturwissenschaften 94: 268–279.CrossRefPubMedGoogle Scholar
  90. Sick, H., 1997. Ornitologia Brasileira. Editora Nova Fronteira, Rio de Janeiro.Google Scholar
  91. Spiller, D. A. & T. W. Schoener, 1998. Lizards reduce spider species richness by excluding rare species. Ecology 79: 503–516.CrossRefGoogle Scholar
  92. Stanton, R. A., D. C. Kesler & F. R. Thompson, 2014. Resource configuration and abundance affect space use of a cooperatively breeding resident bird. The Auk 131: 407–420.CrossRefGoogle Scholar
  93. Stevens, A. N. P., 2010. Dynamics of predation. Nature Education Knowledge 3(10):46. http://www.nature.com/scitable/knowledge/library/dynamics-of-predation13229468].
  94. Telleria, J. L. & L. M. Carrascal, 1994. Weight-density relationships between and within bird communities: implications of niche space and vegetation structure. The American Naturalist 143: 1083–1092.CrossRefGoogle Scholar
  95. Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America 101: 10854–10861.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Tondato, K. K., I. Fantin-cruz, O. C. Pedrollo & Y. R. Súarez, 2013. Spatial distribution of fish assemblages along environmental gradients in the temporary ponds of Northern Pantanal, Brazil. Journal of Limnology 72: 95–102.CrossRefGoogle Scholar
  97. Ulrich, W. & N. J. Gotelli, 2007. Disentangling community patterns of nestedness and species co-occurrence. Oikos 116: 2053–2061.CrossRefGoogle Scholar
  98. Van Perlo, B., 2009. A field Guide to the Birds of Brazil. Oxford University Press, New York.Google Scholar
  99. Weller, M. W., 1999. Wetland Birds: habitat Resources and Conservation Implications. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  100. Whittingham, M. J. & K. L. Evans, 2004. The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146: 210–220.CrossRefGoogle Scholar
  101. Whittingham, M. J., S. J. Butler, J. L. Quinn & W. Cresswell, 2004. The effect of limited visibility on vigilance behaviour and speed of predator detection: implications for the conservation of granivorous passerines. Oikos 106: 377–385.CrossRefGoogle Scholar
  102. Winemiller, K. O. & D. B. Jepsen, 1998. Efects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53: 267–296.CrossRefGoogle Scholar
  103. Wourms, J. P., 1972. The developmental biology of annual fishes III: pre embryonic and embryonic diapause of variable duration in the eggs of annual fishes. Journal of Experimental Zoology 182: 389–414.CrossRefPubMedGoogle Scholar
  104. Yasué, M., J. L. Quinn & W. Cresswell, 2003. Multiple effects of weather on the starvation and predation risk trade-off in choice of feeding location in Redshanks. Functional Ecology 17: 727–736.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Friedrich Wolfgang Keppeler
    • 1
    • 2
    Email author
  • Danielle Ajala Cruz
    • 3
  • Guilherme Dalponti
    • 4
  • Roger Paulo Mormul
    • 2
  1. 1.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Pós-graduação em Ecologia de Ambientes Aquáticos Continentais - PEA, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - NUPÉLIAUniversidade Estadual de Maringá - UEMMaringáBrazil
  3. 3.Pós-Graduação em Ecologia e Conservação, Laboratório de Parasitologia Animal - CCBS - Cidade UniversitáriaUniversidade Federal de Mato Grosso do Sul - UFMSCampo GrandeBrazil
  4. 4.Pós-Graduação em Ecologia e Conservação, Laboratório de Ecologia,- CCBS - Cidade UniversitáriaUniversidade Federal de Mato Grosso do Sul - UFMSCampo GrandeBrazil

Personalised recommendations