Advertisement

Hydrobiologia

, Volume 773, Issue 1, pp 193–205 | Cite as

Invasion risks by non-native freshwater fishes due to aquaculture activity in a Neotropical stream

  • Sandra Carla ForneckEmail author
  • Fabrício Martins Dutra
  • Carlos Eduardo Zacarkim
  • Almir Manoel Cunico
Primary Research Paper

Abstract

This study investigated the potential of aquaculture to spread non-native species associated with a high risk of invasiveness. We identified the biogeographic origin of produced fish species in the micro-watershed of the São Camilo stream, Brazil, the occurrence of non-native species in the São Camilo stream and the potential risk of biological invasions. Fish farmers were interviewed to obtain information about the species produced, and samples with electrofishing equipment were taken in the stream to detect the occurrence of non-native species. The Fish Invasiveness Screening Kit (FISK) protocol was applied to classify non-native species according to their invasive potential. We identified 59 fish farms and 19 produced fish species, including 13 non-native species. The non-native species Oreochromis niloticus represented 93% of production and was the second most abundant species in the stream. Eleven species were classified with a high invasive potential and two with a medium potential. The results showed the prevalence of non-native species use in aquaculture, with species escapes with a high invasive potential. Thus, the non-native species produced in aquaculture represent an important vector of introductions and risk to biodiversity conservation. It is vital to establish biosafety norms, to enable aquaculture to develop in a sustainable way.

Keywords

Biological invasions Escapes Oreochromis niloticus Species introduction Sustainable aquaculture 

Notes

Acknowledgments

The authors thank the researchers of the Research Nucleus in Limnology, Ichthyology and Aquaculture (Nupélia) of the State University of Maringá for their contributions to the taxonomic identification of the specimens collected. S.C. Forneck thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarship. Finally, we thank the anonymous reviewers for their helpful suggestions.

References

  1. Agostinho, A. A. & J. R. Julio Jr, 1996. Ameaça ecológica: peixes de outras águas. Ciência Hoje 21: 36–44.Google Scholar
  2. Arthington, A. H., D. R. Blühdorn & M. Kennard, 1994. Food resource partitioning by Oreochromis mossambicus, and two native fishes in a sub-tropical Australian impoundment. In Chou, L. M., A. D. Munro, T. J. Lam, T. W. Chen, L. K. K. Cheong, J. K. Ding, K. K. Hooi, H. W. Khoo, V. P. R. Phang, K. F. Shim & C. H. Tan (eds), The Third Asian Fisheries Forum. Asian Fisheries Society, Manila: 425–428.Google Scholar
  3. Attayde, J. L., N. Okun, J. Brasil, R. Menezes & P. Mesquita, 2007. Impactos da introdução da tilápia do Nilo, Oreochromis niloticus, sobre a estrutura trófica dos ecossistemas aquáticos do Bioma Caatinga. Oecologia Brasiliensis 11: 450–461.CrossRefGoogle Scholar
  4. Attayde, J. L., J. Brasil & R. A. Menescal, 2011. Impacts of introducing Nile tilapia on the fisheries of a tropical reservoir in North-eastern Brazil. Fisheries Management and Ecology 18: 437–443.CrossRefGoogle Scholar
  5. Azevedo-Santos, V. M., O. Rigolin-Sá & F. M. Pelicice, 2011. Growing, losing or introducing? Cage aquaculture as a vector for the introduction of non-native fish in Furnas Reservoir, Minas Gerais, Brazil. Neotropical Ichthyology 9: 915–919.CrossRefGoogle Scholar
  6. Azevedo-Santos, V. M., F. M. Pelicice, D. P. Lima-Junior, A. L. B. Magalhães, M. L. Orsi, J. R. S. Vitule & A. A. Agostinho, 2015. How to avoid fish introductions in Brazil: education and information as alternatives. Natureza & Conservação 13: 123–132.CrossRefGoogle Scholar
  7. Beveridge, M. C. M. & D. J. Baird, 2000. Diet, feeding and digestive physiology. In Beveridge, M. C. M. & B. J. McAndrew (eds), Tilapias: Biology and Exploitation. Kluwer Academic Publishers, the Netherlands: 59–87.Google Scholar
  8. Blackburn, T. M., J. L. Lockwood & P. Cassey, 2015. The influence of numbers on invasion success. Molecular Ecology 24: 1942–1953.CrossRefPubMedGoogle Scholar
  9. Britton, J. R. & M. L. Orsi, 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22: 555–565.CrossRefGoogle Scholar
  10. Câmara, G., R. C. M. Souza, U. M. Freitas & J. Garrido, 1996. SPRING: integrating remote sensing and GIS with object-oriented data modelling. Computers and Graphics 20: 395–403.CrossRefGoogle Scholar
  11. Canonico, G. C., A. Arthington, J. K. McCrary & M. L. Thieme, 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 463–483.CrossRefGoogle Scholar
  12. Cao, L., W. Wang, Y. Yang, C. Yang, Z. Yuan, S. Xiong & J. Diana, 2007. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research 14: 452–462.CrossRefPubMedGoogle Scholar
  13. Casal, C. M. V., 2006. Global documentation of fish introductions: The growing crisis and recommendations for action. Biological Invasions 8: 3–11.CrossRefGoogle Scholar
  14. Collares-Pereira, M. J. & I. G. Cowx, 2004. The role of catchment scale environmental management in freshwater fish conservation. Fisheries Management and Ecology 11: 303–312.CrossRefGoogle Scholar
  15. Copp, G. H., R. Garthwaite & R. E. Gozlan, 2005. Risk identification and assessment of non-native freshwater fishes: a summary of concepts and perspectives on protocols for the UK. Journal of Applied Ichthyology 21: 371–373.CrossRefGoogle Scholar
  16. Copp, G. H., L. Vilizzi, J. Mumford, G. V. Fenwick, M. J. Godard & R. E. Gozlan, 2009. Calibration of FISK, an invasiveness screening tool for nonnative freshwater fishes. Risk Analysis 29: 457–467.CrossRefPubMedGoogle Scholar
  17. Crooks, J. A., 2011. Lag times. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of biological invasions. University of California Press, Berkeley: 404–410.Google Scholar
  18. Dajoz, R., 1973. Ecologia geral. Editora Vozes, Petrópolis.Google Scholar
  19. Darrigran, G., C. Damborenea, E. C. Drago, I. E. Drago & A. Paira, 2011. Environmental factors restrict the invasion process of Limnoperna fortunei (Mytilidae) in the Neotropical region: a case study from the Andean tributaries. Annales de Limnologie 57: 221–229.CrossRefGoogle Scholar
  20. Diana, J. S., 2009. Aquaculture production and biodiversity conservation. BioScience 59: 27–38.CrossRefGoogle Scholar
  21. FAO, 2014. The State of world fisheries and aquaculture. http://www.fao.org/3/a-i3720e.pdf.
  22. Froese, R. & D. Pauly, 2015. FishBase. World wide web electronic publication. http://www.fishbase.org version (10/2015).
  23. Gherardi, F., 2007. Biological invasions in inland waters: An overview. In Gherardi, F. (ed.), Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. Springer, New York: 3–25.CrossRefGoogle Scholar
  24. Gozlan, R. E., 2008. Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9: 106–115.CrossRefGoogle Scholar
  25. Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Eduem, Maringá.Google Scholar
  26. Hauer, F. R. & G. A. Lamberti, 2007. Methods in Stream Ecology. Academic Press, London.Google Scholar
  27. Holzbach, A. J., E. A. Gubiani & G. Baumgartner, 2009. Iheriingichthys labrosus (Siluriformes: Pimelodidae) in the Piquiri River, Paraná, Brazil: population structure and some aspects of its reproductive biology. Neotropical Ichthyology 7: 55–64.CrossRefGoogle Scholar
  28. Lapointe, N. W. R., R. M. Pendleton & P. L. Angermeier, 2012. A comparison of approaches for estimating relative impacts of non-native fishes. Environmental Management 18: 82–95.CrossRefGoogle Scholar
  29. Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008. Fish invasions in the world’s river systems: When natural processes are blurred by human activities. PLOS Biology 6: 404–410.Google Scholar
  30. Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20: 223–228.CrossRefPubMedGoogle Scholar
  31. Lockwood, J. L., M. F. Hoopes & M. P. Marchetti, 2007. Invasion Ecology. Blackwell Publishing, Oxford.Google Scholar
  32. Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.CrossRefGoogle Scholar
  33. Lövei, G. L., T. M. Lewinsohn & The Biological Invasions in Megadiverse Regions Network, 2012. Megadiverse developing countries face huge risks from invasives. Trends in Ecology & Evolution 27: 2–3.CrossRefGoogle Scholar
  34. Lowe-McConnell, R. H., 2000. The roles of tilapias in ecosystems. In Beveridge, M. C. M. & B. J. McAndrew (eds), Tilapias: Biology and Exploitation. Kluwer Academic Publishers, the Netherlands: 129–162.Google Scholar
  35. Magalhães, A. L. B., L. Casatti & J. R. S. Vitule, 2011. Alterações no Código Florestal Brasileiro favorecerão espécies não-nativas de peixes de água doce. Natureza e Conservação 9: 121–124.CrossRefGoogle Scholar
  36. Magurran, A. E., 1988. Ecological diversity and its measurement. Croom Helm, London.CrossRefGoogle Scholar
  37. Marengoni, N. G., A. Bernardi & A. C. Gonçalves-Júnior, 2007. Tilapicultura vs Culturas da soja e do milho na região Oeste do Paraná. Informações Econômicas 37: 41–49.Google Scholar
  38. Neville, L. E. & S. Murphy, 2001. Invasive alien species: Forging cooperation to address a borderless issue. International Association for Ecology (INTECOL) Newsletter, Spring/Summer: 3–7.Google Scholar
  39. Orsi, M. L. & A. A. Agostinho, 1999. Introdução de peixes por escape acidental de tanques de cultura em rios da Bacia do Rio Paraná. Revista Brasileira de Zoologia 16: 557–560.Google Scholar
  40. Pelicice, F. M., J. R. S. Vitule, D. P. Lima Junior, M. L. Orsi & A. A. Agostinho, 2014. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conservation Letters 7: 55–60.CrossRefGoogle Scholar
  41. Pheloung, P. C., P. A. Williams & S. R. Halloy, 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management 57: 239–251.CrossRefGoogle Scholar
  42. Phelps, R. P. & T. J. Popma, 2000. Sex reversal of tilapia. In Costa-Pierce, B. A. & J. E. Rakocy (eds), Tilapia Aquaculture in the Americas. World Aquaculture Society, Louisiana: 34–59.Google Scholar
  43. Piedrahita, R. H., 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226: 35–44.CrossRefGoogle Scholar
  44. Popma, T. J. & B. W. Green, 1990. Aquaculture production manual: sex reversal of tilapia in earthen ponds. Research and Development Series, Alabama.Google Scholar
  45. Schlaepfer, M. A., D. F. Sax & J. D. Olden, 2011. The potential conservation value of non-native species. Conservation Biology 25: 428–437.CrossRefPubMedGoogle Scholar
  46. Simberlof, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.CrossRefGoogle Scholar
  47. Simberloff, D., 2014. Biological invasions: What’s worth fighting and what can be won? Ecological Engineering 65: 112–121.CrossRefGoogle Scholar
  48. Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pysek, R. Sousa, E. Tabacchi & M. Vila, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28: 58–66.CrossRefGoogle Scholar
  49. Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38: 913–920.CrossRefGoogle Scholar
  50. Troca, D. F. A. & J. P. Vieira, 2012. Potencial invasor dos peixes não nativos cultivados na região costeira do Rios Grande do Sul, Brasil. Boletim do Instituto de Pesca 38: 109–120.Google Scholar
  51. Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar
  52. Vitule, J. R. S., 2009. Introduction of fishes in Brazilian continental ecosystems: review, comments and suggestions for actions against the almost invisible enemy. Neotropical Biology and Conservation 4: 111–122.CrossRefGoogle Scholar
  53. Vitule, J. R. S., C. A. Freire & D. Simberloff, 2009. Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98–108.CrossRefGoogle Scholar
  54. Vitule, J. R. S., C. A. Freire, D. P. Vazquez, M. A. Nuñez & D. Simberloff, 2012. Revisiting the potential conservation value of non-native species. Conservation biology 26: 1153–1155.CrossRefPubMedGoogle Scholar
  55. Williamson, M., 1996. Biological invasions. Chapman & Hall, London.Google Scholar
  56. Zacarkim, C. E. & L. C. Oliveira, 2015. Sistema de informação geográfica na aquicultura: município de Palotina - PR (Geographic information system in aquaculture: Palotina City – PR). PROEC/UFPR, Curitiba.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Aquicultura e Desenvolvimento SustentávelUniversidade Federal do Paraná – Setor PalotinaPalotinaBrazil
  2. 2.Programa de Pós-Graduação em ZoologiaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Laboratório de Ecologia, Pesca e IctiologiaUniversidade Federal do Paraná – Setor PalotinaPalotinaBrazil

Personalised recommendations