Advertisement

Hydrobiologia

, Volume 783, Issue 1, pp 145–158 | Cite as

Change in relative abundance of Atlantic salmon and Arctic charr in Veidnes River, Northern Norway: a possible effect of climate change?

  • Martin-A. Svenning
  • Kjetil Sandem
  • Morten Halvorsen
  • Øyvind Kanstad-Hanssen
  • Morten Falkegård
  • Reidar Borgstrøm
CHARR II

Abstract

Temperature changes affect salmonids across a hierarchy of spatial and temporal scales, so that shifts in thermal river regimes may influence interspecific interactions in sympatric species. In Northern Norway, anadromous populations of Arctic charr (Salvelinus alpinus) and Atlantic salmon (Salmo salar) coexist, but in recent years landings of Arctic charr have decreased, while those of Atlantic salmon have been stable or even increased. Here we studied relative abundance, habitat use and growth rate of sympatric stream-living juveniles of both species in Veidnes River, where they are the only fish species present. In 1998/2000, juvenile Arctic charr dominated, especially in the upper and colder part of the river. In 2010, however, Atlantic salmon juveniles were now prominent in all habitat types, whereas nearly all Arctic charr were captured in slow-flowing water near the river bank. Summer air temperature has increased in the region during the last decade. Positive correlations between summer temperatures and back-calculated growth rates were documented in both species, but the growth response was significantly higher in Atlantic salmon. Accordingly, we suggest that juvenile Atlantic salmon may benefit from a warmer climate in northernmost Norway, at the expense of the more cold-water-adapted Arctic charr.

Keywords

Thermal regime Arctic rivers Salmonids Juvenile growth Habitat use and competition 

Notes

Acknowledgments

We thank Bjarte Benberg and Inge Ingvaldsen for field assistance. We are also grateful to two anonymous referees, as well as the associate editor and guest editor, for the most valuable comments and corrections to the manuscript. Malcolm Elliott, Brian Dempson and Rob Barrett are acknowledged for their assistance in improving the English in this manuscript. Financial support was partly provided by the Norwegian Environment Agency and by the Norwegian Institute for Nature Research.

References

  1. Aalerud, C. 2005. Habitatbruk hos sameksisterende ungfisk hos laks (Salmo salar) og røye (Salvelinus alpinus) i et vassdrag på Varangerhalvøya. MSc thesis, Norwegian University of Life Sciences (UMB).Google Scholar
  2. Abramoff, M., P. Magelhaes & S. Ram, 2004. Image processing with Image. Journal of Biophotonics International 11(7): 36–42.Google Scholar
  3. Andrusak, H. & T. G. Northcote, 1971. Segregation between adult cutthroat trout (Salmo clarki) and Dolly Varden (Salvelinus malma) in small coastal British Columbia lakes. Journal of Fisheries Research Board of Canada 28: 1259–1268.CrossRefGoogle Scholar
  4. Armstrong, J. B., D. E. Schindler, C. P. Ruff, G. T. Brooks, K. E. Bentley & C. T. Torgersen, 2013. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology 94: 2066–2075.CrossRefPubMedGoogle Scholar
  5. Attrill, M. J. & M. Power, 2004. Partitioning of temperature resources amongst an estuarine fish assemblage. Estuarine, Coastal and Shelf Science 61: 725–738.CrossRefGoogle Scholar
  6. Berg, M. 1964. Nord-norske lakseelver. Johan Grundt Tanum Forlag, Oslo (In Norwegian).Google Scholar
  7. Borgstrøm, R. & Ø. Skaala, 1993. Size-dependent catchability of brown trout and Atlantic salmon parr by electrofishing in a low conductivity stream. Nordic Journal of Freshwater Research 68: 14–21.Google Scholar
  8. Bovee, K. D., 1982. A guide to stream habitat analysis using the Instream Flow Incremental Methodology. U.S. Fish and Wildlife Service. Instream Flow Information Paper 12, FWS/OBS-82/26. 248 pp.Google Scholar
  9. Chu, C., N. E. Mandrake & C. K. Minns, 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions 11: 299–310.CrossRefGoogle Scholar
  10. Clarke, K. D, C. J. Pennell, D. G. Reddin & D. A. Scruton, 2003. Spatial segregation of three anadromous salmonids in a northern Labrador (Canada) river during the spawning and over wintering periods. In Spedicato, M. T. & G. Lembo (eds), Aquatic Telemetry: Advances and Applications, Proceedings of the Fifth Conference on Fish Telemetry held in Europe. FAO/COISPA, Ustica: 151–159.Google Scholar
  11. Coghlan, S. M. & N. H. Ringler, 2005. Temperature-dependent effects of rainbow trout on growth of Atlantic salmon parr. Journal of Great Lakes Research 31: 386–396.CrossRefGoogle Scholar
  12. Elliott, J. M. & M. A. Hurley, 2003. Variation in the temperature preference and growth rate of individual fish reconciles differences between two growth models. Freshwater Biology 48: 1793–1798.CrossRefGoogle Scholar
  13. Elliott, J. M. & J. A. Elliott, 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology 77: 1793–1817.CrossRefPubMedGoogle Scholar
  14. Finstad, A. G. & C. L. Hein, 2012. Migrate or stay: terrestrial primary productivity and climate drive anadromy in Arctic char. Global Change Biology 18: 2487–2497.CrossRefGoogle Scholar
  15. Finstad, A. G., L. M. Sættem & S. Einum, 2013. Historical abundance and spatial distributions of spawners determine juvenile habitat accessibility in salmon: implications for the population dynamics and management targets. Canadian Journal of Fisheries and Aquatic Sciences 70: 1339–1345.CrossRefGoogle Scholar
  16. Førland, E. J., R. E. Benestad, F. Flatøy, I. Hanssen-Bauer, J. E. Haugen, K. Isaksen, A. Sorteberg & B. Ådlandsvik, 2009. Climate development in North Norway and the Svalbard region during 1900–2100. Norwegian Polar Institute Report series 128: 1–43.Google Scholar
  17. Fraser, N. C. & G. Power, 1984. The interactive segregation of landlocked Arctic charr (Salvelinus alpinus) from Lake charr (S. namaycush) and Brook charr (S. fontinalis) in two lakes of subarctic Quebec, Canada. In Johnson, L & B. L. Burns (eds), Biology of the Arctic Charr. Proceedings of the International Symposium on Arctic Charr. Winnipeg University of Manitoba Press, Winnipeg: 163–181.Google Scholar
  18. Guðbergsson, G., 2014. Catch statistics for Atlantic salmon, Arctic char and brown trout in Icelandic rivers and lakes 2013. Institute of Freshwater Fisheries, Iceland Report VMST/14045.Google Scholar
  19. Halvorsen, M., 2012. Sjørøyevassdragene i Nord-Norge: 100 eller 400? Report Directorate for Nature Management, DN-utredning 1–2012: 1–36.Google Scholar
  20. Harvey, B. C. & A. J. Stewart, 1991. Fish size and habitat depth relationships in headwater streams. Oecologia 87: 336–342.CrossRefGoogle Scholar
  21. Heggberget, T. G., 1984. Habitat selection and segregation of parr of Arctic charr (Salvelinus alpinus), Brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) in two streams in North Norway. In Johnson, L. & B. L. Burns (eds), Biology of the Arctic Charr, Proceedings of the International Symposium on Arctic charr, Winnipeg University of Manitoba Press, Winnipeg: 217–231.Google Scholar
  22. Heggenes, J., 1990. Habitat utilization and preferences in juvenile Atlantic salmon (Salmo salar) in streams. Regulated Rivers 5: 341–354.CrossRefGoogle Scholar
  23. Heggenes, J. & S. J. Saltveit, 2007. Summer stream habitat partitioning by sympatric Arctic charr, Atlantic salmon and brown trout in two sub-arctic rivers. Journal of Fish Biology 71: 1069–1081.CrossRefGoogle Scholar
  24. Heggenes, J., J. L. Baglinière & R. A. Cunjak, 1999. Spatial niche variability for young Atlantic salmon (Salmo salar) and brown trout (S. trutta) in heterogeneous streams. Ecology of Freshwater Fish 8: 1–21.CrossRefGoogle Scholar
  25. Hein, C. L., G. Öhlund & G. Englund, 2012. Future distribution of Arctic char Salvelinus alpinus in Sweden under climate change: effects of temperature, lake size and species interactions. Ambio 41: 303–312.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Höjesjö, J., L. Stradmeyer, S. Griffiths & J. Armstrong, 2005. Niche convergence of salmon and trout when in competition. Journal of Fish Biology 67: 265.Google Scholar
  27. Isaak, D. J., C. H. Luce, B. E. Rieman, D. E. Nagel, E. E. Peterson, D. L. Horan, S. Parkes & G. L. Chandler, 2010. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecological Applications 20: 1350–1371.CrossRefPubMedGoogle Scholar
  28. Isaak, D. J., S. Wollrab, D. Horan & G. Chandler, 2011. Climate change effects on stream and river temperatures across the northwest U.S. from 1980 to 2009 and implications for salmonid fishes. Climate Change 113: 499–524.CrossRefGoogle Scholar
  29. Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities—the roles of biotic, abiotic and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.Google Scholar
  30. Jensen, A. J., A. V. Zubchenko., T. G. Heggberget., N. A. Hvidsten., B. O. Johnsen., O. Kuzmin., A. A. Loenko., R. A. Lund., V. G. Martynov., T. F. Næsje., A. F. Sharov & F. Økland, 1999. Cessation of the Norwegian drift net fishery: changes observed in Norwegian and Russian populations of Atlantic salmon. ICES Journal of Marine Sciences 56: 84–95.Google Scholar
  31. Jobling, M., 1981. Temperature tolerance and the final preferendum—rapid methods for the assessment of optimum growth temperatures. Journal of Fish Biology 19: 439–455.CrossRefGoogle Scholar
  32. Jonsson, B. & N. Jonsson, 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology 75: 2381–2447.CrossRefPubMedGoogle Scholar
  33. Jonsson, B. & N. Jonsson, 2011. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories. Springer, Dordrecht.CrossRefGoogle Scholar
  34. Jørgensen, L. & M. Halvorsen, 2002. Kartlegging av elvebaserte sjørøyebestander i Finnmark. Rapport 2002-3. Nordnorske Ferskvannsbiologer, Sortland.Google Scholar
  35. Kalleberg, H., 1958. Observations in a stream tank of territoriality and competition in juvenile salmon and trout (Salmo salar L. and S. trutta L.). Report Institute of Freshwater Research. Drottningholm 39: 55–98.Google Scholar
  36. Klemetsen, A., P.-A. Amundsen, B. Dempson, B. Jonsson, N. Jonsson, M. F. Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  37. Larsson, S., 2005. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta - implications for their niche segregation. Environmental Biology of Fishes 73: 89–96.Google Scholar
  38. Larsson, S., T. Forseth, I. Berglund, A. J. Jensen, J. Näslund, M. Elliott & B. Jonsson, 2005. Thermal adaptation of Arctic charr: experimental studies of growth in eleven charr populations from Sweden, Norway and Britain. Freshwater Biology 50: 353–368.CrossRefGoogle Scholar
  39. Linnansaari, T., A. Keskinen, A. Romakkaniemi, J. Erkinaro & P. Orell, 2010. Deep habitats are important for juvenile Atlantic salmon Salmo salar L. in large rivers. Ecology of Freshwater Fish 19: 618–626.CrossRefGoogle Scholar
  40. McCauley, R. W. & J. M. Casselman, 1980. The final preferendum as an index of the temperature for optimum growth in fish. In: Tiews, K. (ed.), Proceedings of World Symposium on Aquaculture in Heated Effluent Recirculation Systems II. Berlin: 81–93.Google Scholar
  41. Nislow, K. H., J. D. Armstrong & J. W. A. Grant, 2011. The Role of competition in the ecology of juvenile Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds.), Atlantic Salmon Ecology. Wiley-Blackwell, Chichester: 171–198.Google Scholar
  42. Power, G., 1973. Estimates of age, growth, standing crop and production of salmonids in some North Norwegian rivers and streams. Report Institute of Freshwater Research. Drottningholm 53: 78–111.Google Scholar
  43. Reese, G. H. & B. C. Harvey, 2002. Temperature-dependent interactions between juvenile steelhead and Sacramento pikeminnow in laboratory streams. Transactions of the American Fishery Society 131: 599–606.CrossRefGoogle Scholar
  44. Reeves, G. H., F. H. Everest & J. D. Hall, 1987. Interactions between the redside shiner (Richardsonius balteatus) and the steelhead trout (Salmo gairdneri) in western Oregon: the influence of water temperature. Canadian Journal of Fisheries and Aquatic Sciences 44: 1603–1613.CrossRefGoogle Scholar
  45. Reist, J. D., F. J. Wrona, T. D. Prowse, M. Power, J. B. Dempson, J. R. King & R. J. Beamish, 2006. An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. Ambio 35: 381–387.CrossRefPubMedGoogle Scholar
  46. Rimmer, D. M., U. Paim & R. L. Saunders, 1984. Changes in the selection of microhabitat by juvenile Atlantic salmon (Salmo salar) at the summer-autumn transition in a small river. Canadian Journal of Fisheries and Aquatic Sciences 41: 469–475.CrossRefGoogle Scholar
  47. Skaala, Ø., S. Kålås & R. Borgstrøm, 2014. Evidence of salmon lice-induced mortality of anadromous brown trout (Salmo trutta) in the Hardangerfjord, Norway. Marine Biology Research 10(3): 279–288.CrossRefGoogle Scholar
  48. Schutz, D. C. & T. G. Northcote, 1972. An experimental study of feeding behavior and interaction of coastal cutthroat trout (Salmo clarki clarki) and Dolly Varden (Salvelinus malma). Journal of Fisheries Research Board of Canada 29: 555–565.CrossRefGoogle Scholar
  49. Sloat, M. R. & A.-M. K. Osterback, 2013. Maximum stream temperature and the occurrence, abundance, and behavior of steelhead trout (Oncorhynchus mykiss) in a southern California stream. Canadian Journal of Fisheries and Aquatic Sciences 70: 64–73.CrossRefGoogle Scholar
  50. Svenning, M.-A., A. Smith-Nilsen & M. Jobling, 1992. Sea water migration of Arctic charr (Salvelinus alpinus L.): correlation between freshwater growth and seaward migration, based on back-calculation from otoliths. Nordic Journal of Freshwater Research 67: 19–26.Google Scholar
  51. Svenning, M.-A., Ø. K. Hanssen, M. Johansen, 1999. Kartlegging av fiskebestandene i potensielle sjørøyevassdrag i Finnmark, Del 2. Oppdragsmelding 586. Norsk institutt for naturforskning, Trondheim.Google Scholar
  52. Svenning, M.-A., A. Klemetsen & T. Olsen, 2007. Habitat and food choice of Arctic charr in Linnévatn on Spitsbergen, Svalbard: the first year-round investigation in a High Arctic lake. Ecology of Freshwater Fish 16: 70–77.CrossRefGoogle Scholar
  53. Svenning, M-A. & S. V. Prusov, 2011. Atlantic salmon. In Jakobsen, T. & V. K. Ozhigin (eds), The arents Sea. Ecosystem, resources, management. Half a century of Russian-Norwegian cooperation. Tapir Academic Press, Trondheim: 363–372.Google Scholar
  54. Svenning, M.-A., M. Falkegård & Ø. K. Hanssen, 2012. Anadromous Arctic Charr in North Norway—A Falling Queen?—NINA Report 780. Norwegian Institute for Nature Research, Trondheim.Google Scholar
  55. Tingley, M. & P. Huybers, 2013. Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature 496: 201–205.CrossRefPubMedGoogle Scholar
  56. Thorstad, E. B., C.D. Todd., I. Uglem., P. A. Bjørn., P. G. Gargan., K. W. Vollset., E. Halttunen., S. Kålås., M. Berg., B. Finstad 2015. Effects of salmon lice Lepeophtheirus salmonis on wild sea trout Salmo trutta—a literature review. Aquaculture Environment Interactions 7(2): 91–113.CrossRefGoogle Scholar
  57. Todd, C. D., K. Friedland, J. MacLean, N. Hazon & A. Jensen, 2011. Getting into hot water? Atlantic salmon responses to climate change in freshwater and marine environments. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds.), Atlantic Salmon Ecology. Wiley-Blackwell, Chichester: 409–443.Google Scholar
  58. Winfield, I. J., J. Hateley, J. M. Fletcher, J. B. James, C. W. Bean & P. Clabburn, 2010. Population trends of Arctic charr (Salvelinus alpinus) in the UK: assessing the evidence for a widespread decline in response to climate change. Hydrobiologia 650: 55–65.CrossRefGoogle Scholar
  59. Wootton, R. J., 1998. Ecology of Teleost Fishes. Fish and Fisheries Series 24. Kluwer Academic Publishers, Dordrecht.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin-A. Svenning
    • 1
  • Kjetil Sandem
    • 1
    • 2
  • Morten Halvorsen
    • 3
  • Øyvind Kanstad-Hanssen
    • 4
  • Morten Falkegård
    • 1
  • Reidar Borgstrøm
    • 2
  1. 1.Arctic Ecology Department (NINA-Tromsø), Fram CenterNorwegian Institute for Nature ResearchTromsøNorway
  2. 2.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  3. 3.Museum NordMelbuNorway
  4. 4.Ferskvannsbiologen AS (Ltd)LødingenNorway

Personalised recommendations