Advertisement

Hydrobiologia

, Volume 773, Issue 1, pp 117–134 | Cite as

Drivers of highly diverse planktonic ciliate assemblages in peat bog pools from Tierra del Fuego (Argentina)

  • G. C. KüppersEmail author
  • G. C. González Garraza
  • M. V. Quiroga
  • R. Lombardo
  • M. C. Marinone
  • A. Vinocur
  • G. Mataloni
Primary Research Paper

Abstract

Peatlands often encompass shallow pools, wherein dystrophic and colored acid waters host a remarkably diverse biota, with ciliates likely playing a key role in their short trophic webs. In the Sphagnum magellanicum-dominated Rancho Hambre peat bog, a 2-year study was conducted in five pools with different morphometric and trophic characteristics, in order to identify main environmental variables driving ciliate species richness, abundance, biomass, and diversity. Overall species richness (125 taxa) was much higher than in northern Hemisphere counterparts. Deep minerotrophic pools hosted the richest communities, showing similar seasonal abundance patterns and the highest species turnover. Although all pools shared the same dominant ciliates, similarity in taxonomic composition among them was generally low (J = 0.22–0.35). Moreover, IndVal analysis showed that rare and occasional species were highly indicative of different pools. Euryoecious, heterotrophic species, occurred in all sites, while mixotrophs were typical from shallow ombrotrophic pools. Rimostrombidium hyalinum was the most indicative species of a deep ombrotrophic pool. A CCA revealed that the abundances of potential ciliate preys, i.e., picophytoplankton, bacterioplankton, and heterotrophic flagellates, were the most significant regulators of abundances of this group. Therefore, ciliate structure and dynamics were influenced by pool morphometry and physical and chemical features, but foremost by interactions with other plankton communities.

Keywords

Planktonic ciliates Diversity IndVal Peat bog pools Tierra del Fuego 

Notes

Acknowledgments

The Agencia Nacional de Promoción Científica y Tecnológica (PICT 2006 1697) and Consejo Nacional de Investigaciones Científicas y Técnicas are greatly acknowledged for financial support. The authors thank the Dirección Provincial de Recursos Hídricos de la Provincia de Tierra del Fuego and the Centro Austral de Investigaciones Científicas y Tecnológicas (CADIC-CONICET) for most valuable logistic support. Ciliate countings were performed at the Instituto de Limnología Dr. R. A. Ringuelet. Copepod identifications were possible due to the valuable help of Silvina Menu Marque, who also commented the draft version of the manuscript. We are also grateful to Rodolfo Iturraspe and Sergio Camargo for helping during the field work and to everyone that participated in the surveys. Finally, we would like to thank the reviewers for comments and suggestions that improved this manuscript.

References

  1. Adrian, R. & B. Schneider-Olt, 1999. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research 21: 2175–2190.CrossRefGoogle Scholar
  2. Archbold, J. H. G. & J. Berger, 1985. A qualitative assessment of some metazoan predators of Halteria grandinella, a common freshwater ciliate. Hydrobiologia 126: 97–102.CrossRefGoogle Scholar
  3. APHA, 2005. Standard Methods for the Examination of Water and Wastewaters, 21st ed. American Public Health Association APHA, AWWA, WEF, Washington DC.Google Scholar
  4. Beaver, J. R. & T. L. Crisman, 1981. Acid precipitation and the response of ciliated protozoans in Florida lakes. Verhandlungen des Internationalen Verein Limnologie 21: 353–358.Google Scholar
  5. Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnology and Oceanography 27: 246–253.CrossRefGoogle Scholar
  6. Beaver, J. R. & T. L. Crisman, 1989. Analysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174: 177–184.CrossRefGoogle Scholar
  7. Berger, H., 1999. Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monographiae Biologicae 78: 1–1080.CrossRefGoogle Scholar
  8. Bienert Jr, R. W., J. R. Beaver & T. L. Crisman, 1991. The contribution of ciliated protozoa to zooplankton biomass in an acidic, subtropical lake. Journal of Protozoology 38: 352–354.CrossRefGoogle Scholar
  9. Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  10. De Cáceres, M. & P. Legendre, 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566–3574.CrossRefPubMedGoogle Scholar
  11. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  12. Foissner, W. & S. Wölfl, 1994. Revision of the genus Stentor Oken (Protozoa, Ciliophora) and description of S. araucanus nov. spec. from South American lakes. Journal of Plankton Research 16: 255–289.CrossRefGoogle Scholar
  13. Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.Google Scholar
  14. Foissner, W., H. Blatterer, H. Berger & F. Kohmann, 1991. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band I: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea. Informationsberichte des Bayer, Landesamtes für Wasserwirtschaft, München.Google Scholar
  15. Foissner, W., H. Berger & F. Kohmann, 1992. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer, Landesamtes für Wasserwirtschaft, München.Google Scholar
  16. Foissner, W., H. Berger & F. Kohmann, 1994. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band III: Hymenostomata, Prostomatida, Nassulida. Informationsberichte des Bayer, Landesamtes für Wasserwirtschaft, München.Google Scholar
  17. Foissner, W., H. Berger, H. Blatterer & F. Kohmann, 1995. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band IV: Gymnostomates, Loxodes, Suctoria. Informationsberichte des Bayer, Landesamtes für Wasserwirtschaft, München.Google Scholar
  18. Foissner, W., H. Berger & J. Schaumburg, 1999. Identification and Ecology of Limnetic Plankton Ciliates. Informationsberichte des Bayer, Landesamtes für Wasserwirtschaft, München.Google Scholar
  19. Foissner, W., A. Chao & L. A. Katz, 2008. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity and Conservation 17: 345–363.CrossRefGoogle Scholar
  20. González Garraza, G., G. Mataloni, R. Iturraspe, R. Lombardo, S. Camargo & M. V. Quiroga, 2012. The limnological character of bog pools in relation to meteorological and hydrological features. Mires and Peat 10: 1–14.Google Scholar
  21. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  22. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  23. Iturraspe, R., 2010. Las Turberas de Tierra del Fuego y el Cambio Climático Global. Fundación Humedales/Wetlands International, Buenos Aires.Google Scholar
  24. Kahl, A., 1930–1935. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) eine Bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Ausschluss der marinen Tintinnidae. In Dahl, F. (ed.), Die Tierwelt Deutschlands. G. Fischer, Jena: 1–866.Google Scholar
  25. Kalinowska, K., 2000. Ciliates in small humic lakes (Masurian Lakeland, Poland): relationship to acidity and trophic parameters. Polish Journal of Ecology 48: 169–183.Google Scholar
  26. Kreutz, M. & W. Foissner, 2006. The Sphagnum Ponds of Simmelried in Germany: A Biodiversity Hot-spot for Microscopic Organisms. Protozoological Monographs, Vol. 3. Shaker Publishers, Aachen.Google Scholar
  27. Küppers, G. C., T. da Silva Paiva, B. do Nascimento Borges, M. L. Harada, G. González Garraza & G. Mataloni, 2011. An Antarctic ciliate, Parasterkiella thompsoni (Foissner) nov. gen., nov. comb., recorded in Argentinean peat-bogs: morphology, morphogenesis, and molecular phylogeny. European Journal of Protistology 47: 103–123.CrossRefPubMedGoogle Scholar
  28. Lara, E., C. V. W. Seppey, G. González Garraza, D. Singer, M. V. Quiroga & G. Mataloni, 2015. Planktonic eukaryote molecular diversity: discrimination of minerotrophic and ombrotrophic peatland pools in Tierra del Fuego (Argentina). Journal of Plankton Research 37: 645–655.CrossRefGoogle Scholar
  29. Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  30. Lynn, D. H., 2008. The Ciliated Protozoa. Characterization, Classification, and Guide to the Literature, 3rd ed. Springer, Ontario.Google Scholar
  31. Macek, M., K. Šimek & T. Bittl, 2001. Conspicuous peak of oligotrichous ciliates following winter stratification in a bog lake. Journal of Plankton Research 23: 353–363.CrossRefGoogle Scholar
  32. Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science Publishing, Oxford.Google Scholar
  33. Mataloni, G., 1997. Flora Algal de las Turberas de Tierra del Fuego. Contribución del Instituto Antártico Argentino No. 467. Instituto Antártico Argentino, Buenos Aires.Google Scholar
  34. Mataloni, G. & G. Tell, 1996. Comparative analysis of the phytoplankton communities of a peat bog from Tierra del Fuego (Argentina). Hydrobiologia 325: 101–112.CrossRefGoogle Scholar
  35. Mataloni, G., G. González Garraza & A. Vinocur, 2015. Landscape-driven environmental variability largely determines abiotic characteristics and phytoplankton patterns in peat bog pools (Tierra del Fuego, Argentina). Hydrobiologia 751: 105–125.CrossRefGoogle Scholar
  36. Mieczan, T., 2007a. Planktonic ciliates in peat ponds of different acidity (E Poland). Electronic Journal of Polish Agricultural Universities, Biology 10: 1–10.Google Scholar
  37. Mieczan, T., 2007b. Relationship among ciliated protozoa and water chemistry in small peat-bog reservoirs (Łęczna-Włodawa Lakeland, Eastern Poland). Oceanological and Hydrobiological Studies 36: 77–86.CrossRefGoogle Scholar
  38. Mieczan, T., 2010a. Vertical microzonation of testate amoebae and ciliates in peatbog waters in relation to physical and chemical parameters. Polish Journal of Ecology 58: 729–740.Google Scholar
  39. Mieczan, T., 2010b. Vertical micro-zonation of testate amoebae and ciliates in peatland waters in relation to potential food resources and grazing pressure. International Review on Hydrobiology 95: 86–102.CrossRefGoogle Scholar
  40. Mieczan, T. & D. Siczek, 2010. Horizontal distribution of ciliated protozoa between the Sphagnum mat and open water zone in a shallow peat-bog pools. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 7: 260–271.Google Scholar
  41. Mieczan, T. & M. Tarkowska-Kukuryk, 2013. Diurnal dynamics of the microbial loop in peatlands: structure, function and relationship to environmental parameters. Hydrobiologia 717: 189–201.CrossRefGoogle Scholar
  42. Müller, H. & W. Geller, 1993. Maximum growth rates of aquatic ciliated Protozoa – the dependence on body size and temperature reconsidered. Archiv für Hydrobiologie 126: 315–327.Google Scholar
  43. Packroff, G., 2000. Protozooplankton in acid mining lakes with special respect to ciliates. Hydrobiologia 433: 157–166.CrossRefGoogle Scholar
  44. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon:volume ratio for marine ‘oligotrichous' ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103.CrossRefGoogle Scholar
  45. Quiroga, M. V., F. Unrein, G. González Garraza, G. Küppers, R. Lombardo, M. C. Marinone, S. Menú Marque, A. Vinocur & G. Mataloni, 2013. The plankton communities from peat bog pools: structure, temporal variation and environmental factors. Journal of Plankton Research 35: 1234–1253.CrossRefGoogle Scholar
  46. Quiroga, M. V., A. Valverde, G. Mataloni & D. Cowan, 2015. Understanding diversity patterns in bacterioplankton communities from a sub-Antarctic peatland. Environmental Microbiology Reports 7: 547–553.CrossRefPubMedGoogle Scholar
  47. Roig, C. & F. A. Roig, 2004. Consideraciones generales. In Blanco, D. E. & V. M. de la Balze (eds), Los Turbales de la Patagonia, Bases para su Inventario y la Conservación de su Biodiversidad. Fundación Humedales, Wetlands International, Buenos Aires: 5–21.Google Scholar
  48. Rydin, H. & J. K. Jeglum, 2006. The Biology of Peatlands. Oxford University Press, Oxford.CrossRefGoogle Scholar
  49. Searles, P. S., B. R. Kropp, S. D. Flint & M. M. Caldwell, 2001. Influence of solar UV-B radiation on peatland microbial communities of southern Argentinia. New Phytologist 152: 213–221.CrossRefGoogle Scholar
  50. Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Gauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. DOC procedures subgroup report. Marine Chemistry 41: 37–49.CrossRefGoogle Scholar
  51. Sime Ngando, T. & C. A. Grolière, 1991. Effets quantitatifs des fixateurs sur la conservation des ciliés planctoniques d’eau douce. Archiv für Protistenkunde 140: 109–120.CrossRefGoogle Scholar
  52. Šimek, K., J. Bobkovh, M. Macek & J. Nedoma, 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnology and Oceanography 40: 1077–1090.CrossRefGoogle Scholar
  53. Šimek, K., M. Macek, J. Pernthaler, V. Straskrabova & R. Psenner, 1996. Can freshwater planktonic ciliates survive on a diet of picoplankton? Journal of Plankton Research 18: 597–613.CrossRefGoogle Scholar
  54. Šimek, K., D. Babenzien, T. Bittl, R. Koschel, M. Macek, J. Nedoma & J. Vrba, 1998. Microbial food webs in an artificially divided acidic bog lake. International Review of Hydrobiol 83: 3–18.CrossRefGoogle Scholar
  55. Sonntag, B., M. Summerer & R. Sommaruga, 2007. Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora). Freshwater Biology 52: 1476–1485.CrossRefPubMedCentralGoogle Scholar
  56. Sonntag, B., M. C. Strüder-Kypke & M. Summerer, 2008. Uroleptus willi nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes. Densia 23: 279–288.Google Scholar
  57. Summerer, M., B. Sonntag, P. Hörtnagl & R. Sommaruga, 2009. Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella. Protist 160: 233–243.CrossRefPubMedGoogle Scholar
  58. Tadonléké, R. D., D. Planas & M. Lucotte, 2005. Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria. Microbial Ecology 49: 325–341.CrossRefPubMedGoogle Scholar
  59. ter Braak C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (vers. 4). Microcomputer Power, Ithaca, NY.Google Scholar
  60. Utermöhl, H., 1958. Zur Vervollkommung der quatitativen Phytopankton-Methodik. Internationale Vereiningung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  61. Weisse, T. & P. Stadler, 2006. Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnology and Oceanography 51: 1708–1715.CrossRefGoogle Scholar
  62. Wilbert, N., 1975. Eine verbesserte Technik der Protargolimprägnation für Ciliaten. Mikrokosmos 64: 171–179.Google Scholar
  63. Zar, J. H., 2010. Biostatistical Analysis. Pearson Prentice Hall, Upper Saddle River.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • G. C. Küppers
    • 1
    Email author
  • G. C. González Garraza
    • 2
  • M. V. Quiroga
    • 3
  • R. Lombardo
    • 4
  • M. C. Marinone
    • 5
  • A. Vinocur
    • 4
    • 5
  • G. Mataloni
    • 2
  1. 1.División InvertebradosMuseo Argentino de Ciencias Naturales Bernardino RivadaviaBuenos AiresArgentina
  2. 2.Instituto de Investigación e Ingeniería Ambiental (3iA)Universidad Nacional de San MartínSan MartínArgentina
  3. 3.Laboratorio de Ecología y Fotobiología Acuática, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH)UNSAM-CONICETChascomúsArgentina
  4. 4.Departamento de Ecología, Genética y Evolución (DEGE), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
  5. 5.Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos AiresBuenos AiresArgentina

Personalised recommendations