, Volume 773, Issue 1, pp 63–75 | Cite as

Fatty acid profiles are biomarkers of fish habitat use in a river-floodplain ecosystem

  • Neil P. RudeEmail author
  • Jesse T. Trushenski
  • Gregory W. Whitledge
Primary Research Paper


Fatty acid (FA) analyses of fish tissues offer the potential to gain new knowledge of habitat- or forage-specific energy inputs to fishes in river-floodplain ecosystems, although limited information exists regarding among-habitat differences in FA biomarkers. The goal of this study was to determine if differences in fish FA profiles among main channel and connected and disconnected floodplain lakes exist in large river-floodplain systems. Bluegill Lepomis macrochirus FA profiles were generated to assess differences among two reaches of the Illinois River, USA, and its connected and disconnected floodplain lakes and determine whether FA signatures could be used to reclassify fish to their source habitat. Bluegill FA profiles differed among habitats and river reaches, including differences in levels of individual FAs (e.g., 18:2n−6, an indicator of allochthonous inputs, was higher among main channel fish) and FA groupings (e.g., n−3:n−6 FA ratio, an indicator of aquatic primary productivity, was higher among floodplain lake fish), which enabled >87.5% reclassification accuracy of fish to their source environment. We demonstrated that bluegill FA profiles differed among reaches and laterally among river channel and floodplain habitats, suggesting that FA profiles can be used to infer recent habitat use and habitat-specific foraging of fishes in large river-floodplain ecosystems.


Fatty acids Biomarkers Large River Floodplain lakes Fish 



We would like to thank Kurt Smith and Paul Hitchens of the Southern Illinois University Center for Fisheries, Aquaculture, and Aquatic Sciences, and Wayne Herndon and Rob Hilsabeck of the Illinois Department of Natural Resources for field assistance and collection of fish. We would also like to thank Heidi Hill and Brian Gause of the Southern Illinois University Center for Fisheries, Aquaculture, and Aquatic Sciences for lab assistance.


  1. Ahlgren, G., T. Vrede & W. Goedkoop, 2009. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos – are there specific optima? In Arts, M. T., M. T. Brett & M. J. Kainz (eds), Lipids in aquatic ecosystems. Springer, New York, NY: 147–178.CrossRefGoogle Scholar
  2. Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.CrossRefGoogle Scholar
  3. Boon, P. I., P. Virtue & P. D. Nichols, 1996. Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Marine and Freshwater Research 47: 27–41.CrossRefGoogle Scholar
  4. Brett, M. T. & D. C. Muller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38: 483–499.CrossRefGoogle Scholar
  5. Brett, M. T., D. C. Muller-Navarra & J. Persson, 2009. Crustacean zooplankton fatty acid composition. In Arts, M. T., M. T. Brett & M. J. Kainz (eds), Lipids in aquatic ecosystems. Springer, New York, NY: 115–146.CrossRefGoogle Scholar
  6. Burns, C. W., M. T. Brett & M. Schallenberg, 2011. A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshwater Biology 56: 889–903.CrossRefGoogle Scholar
  7. Christie, W. W., 1982. Lipid Analysis, 2nd ed. Pergamon, Oxford.Google Scholar
  8. Cummins, K. W., 1974. Structure and function of stream ecosystems. BioScience 24: 631–641.CrossRefGoogle Scholar
  9. Czesny, S., J. Rinchard, S. D. Hansen, J. M. Dettmers & K. Dabrowski, 2011. Fatty acid signatures of Lake Michigan prey fish and invertebrates: among species differences and spatiotemporal variability. Canadian Journal of Fisheries and Aquatic Sciences 68: 1211–1230.CrossRefGoogle Scholar
  10. Dalsgaard, J., M. St, G. John, D. C. Kattner, D. C. Muller-Navarra & W. Hagen, 2003. Fatty acid trophic markers in the pelagic marine food environment. Advanced Marine Biology 46: 226–340.Google Scholar
  11. Dayhuff, L., 2004. Chemometric analyses of fatty acids in sauger, white bass, and paddlefish from the Ohio River as indicators of species, season, and subpopulations. Dissertation, Tennessee Technological University, Cookeville, Tennessee, USA.Google Scholar
  12. Fausch, K. D., C. E. Torgersen, C. V. Baxter & H. W. Li, 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52: 483–498.CrossRefGoogle Scholar
  13. Folch, J., M. Lees & G. H. Sloane-Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 276: 497–507.Google Scholar
  14. Garcia de Emiliani, M. O., 1993. Seasonal succession of phytoplankton in a lake of the Paraná river floodplain, Argentina. Hydrobiologia 264: 101–114.CrossRefGoogle Scholar
  15. Garcia de Emiliani, M. O., 1997. Effects of water level fluctuations on phytoplankton in a river–floodplain lake system (Parana River, Argentina). Hydrobiologia 357: 1–15.CrossRefGoogle Scholar
  16. Gonzalez-Baro, M. & R. J. Pollero, 1988. Lipid characterization and distribution among tissues of freshwater crustacean Macrobrachium borellii during an annual cycle. Comparative Biochemical Physiology 91B: 711–715.Google Scholar
  17. Guegan, J. F., S. Lek & T. Oberdorff, 1998. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391: 382–384.CrossRefGoogle Scholar
  18. Gunning, G. E. & C. R. Schoop, 1963. Occupancy of home range by longear sunfish, Lepomis m. megalotis (Rafinesque), and bluegill. Lepomis m. macrochirus Rafinesque. Animal Behaviour 11: 325–330.CrossRefGoogle Scholar
  19. Hamilton, S. K., W. M. Lewis Jr. & S. J. Sippel, 1992. Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89: 324–330.CrossRefGoogle Scholar
  20. Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood–plain lake (Lago Batata, Pará, Brasil): responses to gradual environmental change. Hydrobiologia 346: 169–181.CrossRefGoogle Scholar
  21. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  22. King, A. J., 2004. Ontogenetic patterns of habitat use by fishes within the main channel of an Australian floodplain river. Journal of Fish Biology 65: 1582–1603.CrossRefGoogle Scholar
  23. King, A. J., P. Humphries & P. S. Lake, 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60: 773–786.CrossRefGoogle Scholar
  24. Koel, T. M. & R. E. Sparks, 2002. Historical patterns of river stage and fish communities as criteria for operations of dams on the Illinois River. River Research and Applications 18: 3–19.CrossRefGoogle Scholar
  25. Koussoroplis, A. M., C. Lemarchand, A. Bec, C. Desvilettes, C. Amblard, C. Fournier, P. Berny & G. Bourdier, 2008. From aquatic to terrestrial food webs: decrease of the docosahexaenoic acid/linoleic acid ratio. Lipids 43: 461–466.CrossRefPubMedGoogle Scholar
  26. Laporte, J. & J. T. Trushenski, 2011. Growth performance and tissue fatty acid composition of largemouth bass fed diets containing fish oil or blends of fish oil and soy–derived lipids. North American Journal of Aquaculture 73: 435–444.CrossRefGoogle Scholar
  27. Lau, D. C. P., T. Vrede, J. Pickova & W. Goedkoop, 2012. Fatty acid composition of consumers in boreal lakes: variation across species, space and time. Freshwater Biology 57: 24–38.CrossRefGoogle Scholar
  28. Lehman, P. W., T. Sommer & L. Rivard, 2008. The influence of floodplain habitat on the quantity and quality of riverine phytoplankton carbon produced during the flood season in San Francisco Estuary. Aquatic Ecology 42: 363–378.CrossRefGoogle Scholar
  29. Maazouzi, C., G. Masson, M. S. Izquierdo & J. C. Pihan, 2007. Fatty acid composition of the amphipod Dikerogammarus villosus: feeding strategies and trophic links. Comparative Biochemistry and Physiology 147: 868–875.CrossRefPubMedGoogle Scholar
  30. Miranda, L. E., 2005. Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River. Transactions of the American Fisheries Society 134: 1480–1489.CrossRefGoogle Scholar
  31. Mittelbach, G. G., 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65: 449–513.CrossRefGoogle Scholar
  32. Napolitano, G. E., 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Arts, M. T. & B. C. Wainman (eds), Lipids in freshwater ecosystems. Springer-Verlag, New York, NY: 21–44.CrossRefGoogle Scholar
  33. Napolitano, G. E., N. C. Shantha, W. R. Hill & A. E. Luttrell, 1996. Lipid and fatty acid composition of stream periphyton and stoneroller minnows (Campostoma anomalum): trophic and environmental applications. Archiv fuer Hydrobiologie 137: 211–225.Google Scholar
  34. Nunn, A. D., J. P. Harvey & I. G. Cowx, 2007. Benefits to 0+ fishes of connecting man–made waterbodies to the lower River Trent, England. River Research and Applications 23: 361–376.CrossRefGoogle Scholar
  35. Paukert, C. P., D. W. Willis & M. A. Bouchard, 2004. Movement, home range, and site fidelity of bluegills in a Great Plains Lake. North American Journal of Fisheries Management 24: 154–161.CrossRefGoogle Scholar
  36. Perga, M. E., A. Bec & O. Anneville, 2009. Origins of carbon sustaining the growth of whitefish Coregonus lavaretus early larval states in Lake Annecy: insights from fatty–acid biomarkers. Journal of Fish Biology 74: 2–17.CrossRefPubMedGoogle Scholar
  37. Pohl, P. & F. Zurheide, 1979. Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In Hoppe, H. A. & T. Levring (eds.), Marine algae in pharmaceutical science. Walter de Gruyter, Berlin: 65–80.Google Scholar
  38. Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.CrossRefGoogle Scholar
  39. Ravet, J. L., M. T. Brett & G. B. Arhonditsis, 2010. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. Ecology 91: 180–190.CrossRefPubMedGoogle Scholar
  40. Reuss, N. & L. Poulsen, 2002. Evaluation of fatty acids and biomarkers for natural plankton community. A field study of a spring bloom and post bloom period of west Greenland. Marine Biology 141: 423–434.CrossRefGoogle Scholar
  41. Roach, K. A., 2013. Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshwater Science 32: 283–298.CrossRefGoogle Scholar
  42. Rossi, S., A. Sabates, M. Latasa & E. Reyes, 2006. Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in NW Mediterranean. Journal of Plankton Research 28: 551–562.CrossRefGoogle Scholar
  43. Rude, N. P, 2012. Tracing energy flow pathways to fish using fatty acids and stable isotopes of hydrogen and oxygen. M.S. Thesis, Department of Zoology, Southern Illinois University, Carbondale, IL.Google Scholar
  44. Sargent, J. R., R. J. Parkes, I. Mueller-Harvey & R. J. Henderson, 1987. Lipid biomarkers in marine ecology. In Sleigh, M. A. (ed.), Microbes in the sea. Ellis Horwood, Chichester: 119–138.Google Scholar
  45. Schlosser, I. J., 1991. Stream fish ecology: a landscape perspective. BioScience 41: 704–712.CrossRefGoogle Scholar
  46. Scholz, O. & P. I. Boon, 1993. Biofilms on submerged River Red gum (Eucalyptus camaldulensis Dehnh, Myrtaceae) wood in billabongs: an analysis of bacterial assemblages using phospholipid profiles. Hydrobiologia 259: 169–178.CrossRefGoogle Scholar
  47. Schultz, D. W., J. E. Garvey & R. C. Brooks, 2007. Backwater immigration by fishes through a water control structure: implications for connectivity and restoration. North American Journal of Fisheries Management 27: 172–180.CrossRefGoogle Scholar
  48. Stafford, J. D., M. W. Eichholz & A. C. Phillips, 2012. Impacts of mute swans (Cygnus olor) on submerged aquatic vegetation in Illinois River valley backwaters. Wetlands 32: 851–857.CrossRefGoogle Scholar
  49. Starrett, W. C., 1971. Man and the Illinois River. In Ogelsby, R. T., C. A. Carlson & J. A. McCann (eds), River Ecology and the Impact of Man. Academic Press, New York: 131–169.Google Scholar
  50. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  51. Thorp, J. H. & M. D. DeLong, 1994. The riverine productivity model: an heuristic view of carbon source and organic processesing in large river ecosystems. Oikos 70: 305–308.CrossRefGoogle Scholar
  52. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The river ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Application 22: 123–147.CrossRefGoogle Scholar
  53. Tocher, D. R., 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science 11: 107–184.CrossRefGoogle Scholar
  54. Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.CrossRefGoogle Scholar
  55. Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.CrossRefGoogle Scholar
  56. Turner, T. F., J. C. Trexler, G. L. Miller & K. E. Toyer, 1994. Temporal and spatial dynamics of larval and juvenile fish abundance in temperate floodplain river. Copeia 1994: 174–183.CrossRefGoogle Scholar
  57. Twombly, S. & W. M. Lewis Jr., 1987. Zooplankton abundance and species composition in Laguna La Orsinera, a Venezuelan flood–plain lake. Arch Hydrobiol/Suppl 79: 87–107.Google Scholar
  58. U.S. Geological Survey, 2013. Water-resources data for the United States, water year 2012: U.S. Geological Survey water-data report WDR-US-2012, site 05586100. Available at: Accessed 2015.
  59. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  60. Wakeham, S. G. & E. A. Canuel, 1990. Fatty acids and sterols of particulate matter in a brackish and seasonally anoxic coastal salt pond. Organic Geochemistry 16: 703–713.CrossRefGoogle Scholar
  61. Werner, E. E. & D. J. Hall, 1988. Ontogenetic habitat shifts in bluegill: the foraging rate–predation risk trade–off. Ecology 69: 1352–1366.CrossRefGoogle Scholar
  62. Young, M. P., G. W. Whitledge & J. T. Trushenski, 2015. Fatty acid profiles distinguish channel catfish from three reaches of the Lower Kaskaskia River and its floodplain lakes. River Research and Applications. Advance online publication. doi:  10.1002/rra.2856
  63. Zeigler, J. M. & G. W. Whitledge, 2010. Assessment of otolith chemistry for identifying source environment of fishes in the lower Illinois River, Illinois. Hydrobiologia 638: 109–119.CrossRefGoogle Scholar
  64. Zenebe, T., G. Ahlgren, I. B. Gustafsson & M. Boberg, 1998. Fatty acid and lipid content of Oreochromis niloticus L. in Ethiopian lakes – dietary effects of phytoplankton. Ecology of Freshwater Fish 7: 146–158.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Neil P. Rude
    • 1
    Email author
  • Jesse T. Trushenski
    • 1
  • Gregory W. Whitledge
    • 1
  1. 1.Department of Zoology and Center for Ecology, Center for Fisheries, Aquaculture, and Aquatic SciencesSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations