, Volume 773, Issue 1, pp 49–62 | Cite as

Does temperature and salinity limit asexual reproduction of Aurelia aurita polyps (Cnidaria: Scyphozoa) in the Gulf of Gdańsk (southern Baltic Sea)? An experimental study

  • Adam Sokołowski
  • Dominika BrulińskaEmail author
  • Michał Olenycz
  • Maciej Wołowicz
Primary Research Paper


Outbreaks of the moon jellyfish Aurelia aurita occur seasonally in the Gulf of Gdańsk (southern Baltic Sea), but field observations of sedentary polyps are scarce suggesting that asexual reproduction of scyphistomae is restricted in this water basin. This study has been set up to investigate the effects of temperature (3, 5, 10, 15, 20 and 25°C) and salinity (2, 4, 7, 12 and 18 PSU) on polyp strobilation and budding under gradually changing exposure conditions. Duration and intensity of strobilation increased in low temperatures, while higher temperatures reduced (20°C) and ceased (25°C) production of ephyrae and enhanced budding activity. The asexual reproduction is therefore synchronized well with environmental conditions with strobilation occurring in spring and autumn/winter and growth of colonies (budding) taking place in summer. This provides a potential of scyphistomae to develop benthic colonies and support population size of medusae in the gulf. Salinity of 4 PSU caused absorption of tentacles and in 2 PSU, 100% mortality of polyps was observed indicating high sensitivity of scyphistomae to low salinity. An increase in water salinity induced more numerous strobilation as well as enhanced and longer budding suggesting that scyphopolyps can be more abundant in the more saline western Baltic.


Aurelia aurita Polyps Asexual reproduction Gulf of Gdańsk Baltic Sea 



The authors are thankful to Mr. Marcin Betlejewski from the Gdynia Aquarium for providing polyps of Aurelia aurita for the above experiments.


  1. Andrulewicz, E., M. Szymelfenig, J. Urbański, J. M. Węsławski & S. Węsławski, 2008. Morze Bałtyckie-o tym warto wiedzieć. Polski Klub Ekologiczny, Gdańsk. (in Polish).Google Scholar
  2. Arai, M. N., 2009. The potential importance of podocyst to the formation of scyphozoan blooms: a review. Hydrobiologia 616: 241–246.CrossRefGoogle Scholar
  3. Chapman, D. M., 1968. Structure, histochemistry and formation of the podocyst and cuticle of Aurelia aurita. Journal of the Marine Biological Association of the United Kingdom 48: 187–208.CrossRefGoogle Scholar
  4. Coyne, J. A., 1973. An investigation of the dynamics of population growth and control in scyphistomae of the scyphozoan Aurelia aurita. Chesapeake Science 14: 55–58.CrossRefGoogle Scholar
  5. Dawson, M. N. & D. K. Jacobs, 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). The Biological Bulletin 200: 92–96.CrossRefPubMedGoogle Scholar
  6. Dawson, M. N. & L. E. Martin, 2001. Geographic variation and ecological adaptation in Aurelia (Scyphozoa: Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259–273.CrossRefGoogle Scholar
  7. Dziubińska A., 2011. Rate and Direction of Benthic Communities Succession in the Gulf of Gdańsk Coastal Zone. PhD thesis, University of Gdańsk, Gdynia.Google Scholar
  8. Elliott, J. K. & W. C. Leggett, 1996. The effect of temperature on predation rates of a fish (Gasterosteus aculeatus) and a jellyfish (Aurelia aurita) on larval capelin (Mallotus villosus). Canadian Journal of Fisheries and Aquatic Sciences 53: 1393–1402.CrossRefGoogle Scholar
  9. El-Serehy, H. A., 2005. The jellyfish Aurelia aurita (Cnidaria: Scyphomedusae): its life history strategy, migration activity and its impact on the zooplankton community of Suez Canal, Egypt. Egyptian Journal Aquatic Research 31: 179–190.Google Scholar
  10. Gröndahl, F., 1988a. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Marine Biology 97: 541–550.CrossRefGoogle Scholar
  11. Gröndahl, F., 1988b. Interactions between polyps of Aurelia aurita and planktonic larvae of scyphozoans: an experimental study. Marine Ecology Progress Series 45: 87–93.CrossRefGoogle Scholar
  12. Halisch, W., 1933. Beobachtungen an Scyphopolypen. Zoologischer Anzeiger 104: 296–304. (in German).Google Scholar
  13. Han, C.-H. & S.-I. Uye, 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita. Plankton and Benthos Research 5: 98–105.CrossRefGoogle Scholar
  14. Hernroth, L. & F. Gröndahl, 1985. On the biology of Aurelia aurita (L.): major factors regulating the occurrence of ephyrae and young medusae in the Gullmar Fjord, Western Sweden. Bulletin of Marine Science 37: 567–576.Google Scholar
  15. Herrmann, K., B. Siefker & S. Berking, 2003. Sterile polystyrene culture dishes induce transformation of polyps into medusa in Aurelia aurita (Scyphozoa, Cnidaria). Methods in Cell Science 25: 135–136.CrossRefPubMedGoogle Scholar
  16. Holst, S., 2012. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690: 127–140.CrossRefGoogle Scholar
  17. Holst, S. & G. Jarms, 2007. Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Marine Biology 151: 863–871.CrossRefGoogle Scholar
  18. Holst, S. & G. Jarms, 2010. Effects of low salinity on settlement and strobilation of Scyphozoa (Cnidaria): Is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea? Hydrobiologia 645: 53–68.CrossRefGoogle Scholar
  19. Ishii, H. & T. Watanabe, 2003. Experimental study of growth and asexual reproduction in Aurelia aurita polyps. Sessile Organisms 20: 69–73.CrossRefGoogle Scholar
  20. Ishii, H., T. Ohba & T. Kobayashi, 2008. Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton and Benthos Research 3: 107–113.CrossRefGoogle Scholar
  21. Janas, U. & Z. Witek, 1993. The occurrence of medusa in the southern Baltic and their importance in the ecosystem, with special emphasis on Aurelia aurita. Oceanologia 34: 69–84.Google Scholar
  22. Jansen, H., C. B. Augustin, H. H. Hinrichsen & S. Kube, 2013. Impact of secondary hard substrate on the distribution and abundance of Aurelia aurita in the western Baltic Sea. Marine Pollution Bulletin 75: 224–234.CrossRefGoogle Scholar
  23. Kruk-Dowgiałło, L. & A. Szaniawska, 2008. Gulf of Gdańsk and Puck Bay. In Schiewer, U. (ed.), Ecology of Baltic Coastal Waters, Vol. 197., Ecological Studies Springer-Verlag, Berlin: 139–166.CrossRefGoogle Scholar
  24. Leppäranta, M. & K. Myrberg, 2009. Chapter 3: Topography and Hydrography of Baltic Sea. In Blondel, P. (ed.), Physical Oceanography of the Baltic Sea. Praxis Publishing Ltd., Chichester: 41–88.CrossRefGoogle Scholar
  25. Liu, W.-C., W.-T. Lo, J. E. Purcell & H.-H. Chang, 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616: 247–258.CrossRefGoogle Scholar
  26. Lo, W. T. & I. L. Chen, 2008. Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuarine, Coastal and Shelf Science 76: 227–238.CrossRefGoogle Scholar
  27. Lu, N., C. Liu & P. Guo, 1989. Effect of salinity on larva of edible medusae (Rhopilema esculenta Kishinouye) at different development phases and a review on the cause of jellyfish resources falling greatly in Liaodong Bay. Acta Ecologica Sinica 9: 304–309.Google Scholar
  28. Lucas, K. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.CrossRefGoogle Scholar
  29. Lucas, K. H., W. M. Graham & C. Widmer, 2012. Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Advances in Marine Biology 63: 133–196.CrossRefPubMedGoogle Scholar
  30. Meier, H. M., H. C. Andersson, B. Arheimer, T. Blenckner, B. Chubarenko, C. Donnelly, K. Eilola, B. G. Gustafsson, A. Hansson, J. Havenhand, A. Höglund, I. Kuznetsov, B. R. MacKenzie, B. Müller-Karulis, T. Neumann, S. Niiranen, J. Piwowarczyk, U. Raudsepp, M. Reckermann, T. Ruoho-Airola, O. P. Savchuk, F. Schenk, S. Schimanke, G. Väli, J. M. Weslawski & E. Zorita, 2012. Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem - first results from multi-model ensemble simulations. Environmental Research Letters 7: 034005.CrossRefGoogle Scholar
  31. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  32. Miyake, H., K. Iwao & Y. Kakinuma, 1997. Life history and environment of Aurelia aurita. South Pacific Study 17: 273–285.Google Scholar
  33. Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451–459.CrossRefGoogle Scholar
  34. Möller, H., 1980. Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Marine Biology 60: 123–128.CrossRefGoogle Scholar
  35. Multu, E., 2001. Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black Sea. Marine Biology 138: 329–339.CrossRefGoogle Scholar
  36. Olsen, N. J., K. Frandsen & H. U. Riisgård, 1994. Population dynamics, growth and energetic of jellyfish Aurelia aurita in shallow fjord. Marine Ecology-Progress Series 105: 9–18.CrossRefGoogle Scholar
  37. Palmen, E., 1953. Seasonal occurrence of ephyrae and subsequent instars of Aurelia aurita (L.) in the shallow waters of Tvärminne, S. Finnland. Archivum Societatis Zoologicae-Botanicae Fennicae Vanamo 8: 122–131.Google Scholar
  38. Prieto, L., D. Astorga, G. Navarro & J. Ruiz, 2010. Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5: 1–10.CrossRefGoogle Scholar
  39. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology-Progress Series 180: 187–196.CrossRefGoogle Scholar
  40. Purcell, J. E., S.-I. Uye & W. T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  41. Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.CrossRefGoogle Scholar
  42. Purcell, J. E., D. Atienza, V. Fuentes, A. Olariaga, U. Tives, C. Colahan & J.-M. Gili, 2012. Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690: 169–180.CrossRefGoogle Scholar
  43. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution 24: 312–322.CrossRefGoogle Scholar
  44. Russell, F. R., 1970. The Medusae of the British Isles T.II- Pelagic Scyphozoa. Cambridge University Press, London.Google Scholar
  45. Saranchova, O. L., O. O. Ushakova & D. V. Belyaeva, 2006. Resistance of larvae of Common species of White Sea invertebrates to extreme changes in salinity. Russian Journal of Marine Biology 32: 369–374.CrossRefGoogle Scholar
  46. Schiewer, U., 2008. Ecology of Baltic Coastal Waters. Springer Verlag, Berlin.CrossRefGoogle Scholar
  47. Sokal, R. R., F. J. Rohlf & W. H. Freeman, 1995. Biometry: The Principles and Practice of Statistics in Biological Research. WH Freeman and company, New York.Google Scholar
  48. Szymczycha, B., S. Vogler & J. Pempkowiak, 2012. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, Southern Baltic. Science of the Total Environment 438: 86–93.CrossRefPubMedGoogle Scholar
  49. Thein, H., H. Ikeda & S.-I. Uye, 2012. The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690: 157–167.CrossRefGoogle Scholar
  50. Vagelli, A. A., 2007. New observations on the asexual reproduction of Aurelia aurita (Cnidaria, Scyphozoa) with comments on its life cycle and adaptative significance. Invertebrate Zoology 4: 111–127.Google Scholar
  51. Wang, Y.-T., S. Zheng, S. Sun & F. Zhang, 2015. Effect of temperature and food type on asexual reproduction in Aurelia sp.1 polyps. Hydrobiologia 754: 169–178.CrossRefGoogle Scholar
  52. Watanabe, T. & H. Ishii, 2001. An in situ estimation of the number of ephyrae liberated from polyps of Aurelia aurita on settling plates in Tokyo Bay. Hydrobiologia 451: 247–258.CrossRefGoogle Scholar
  53. Wikström, D. A., 1932. Beobachtungen über die Ohrenqualle (Aurelia aurita L.) in den Schären SW-Finnlands. Memoranda Societatis pro Fauna et Flora Fennica 8: 14–17.Google Scholar
  54. Willcox, S., N. A. Moltschaniwskyj & C. Crawford, 2007. Asexual reproduction in scyphistomae of Aurelia sp.: effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology 353: 107–114.CrossRefGoogle Scholar
  55. Vuorinen, I., J. Hänninen, M. Rajasilta, P. Laine, J. Eklund, F. Montesino-Pouzols, F. Corona, K. Junker, H. E. M. Meier & J. W. Dippner, 2015. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas–implications for environmental monitoring. Ecological Indicators 50: 196–205.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yuan, D., N. Nakaniski, D. K. Jacobs & V. Hartenstein, 2008. Embryonic development and metamorphosis of the scyphozoan Aurelia. Development Genes and Evolution 218: 525–539.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adam Sokołowski
    • 1
  • Dominika Brulińska
    • 1
    Email author
  • Michał Olenycz
    • 2
  • Maciej Wołowicz
    • 1
  1. 1.Department of Marine Ecosystems Functioning, Institute of OceanographyUniversity of GdańskGdyniaPoland
  2. 2.Department of EcologyMaritime Institute of GdańskGdańskPoland

Personalised recommendations