, Volume 773, Issue 1, pp 23–34 | Cite as

Invertebrate responses to flow: trait-velocity relationships during low and moderate flows

  • Andrew J. BrooksEmail author
  • Tim Haeusler
Primary Research Paper


The mechanisms underlying responses of stream invertebrates to low flows are poorly understood. To clarify the strategies used to tolerate and survive low flow periods, we tested associations between patch-scale invertebrate densities and velocity within riffle habitats during moderate and low flows. We focused on filter-feeding and respiration traits because they have a mechanistic link to invertebrate low flow responses. 228 samples were collected from 3 riffles at 2 low and 2 moderate flow periods. Maximum densities of filter-feeders were positively associated with the highest velocities during low flows, but not moderate flows, partly consistent with our prediction that they would be structured along velocity gradients to meet nutritional requirements. Gill-respiring invertebrate densities were inversely related to velocity during both flows, probably attributable to organic matter accumulated in low velocity areas. O2 requirements during low flows did not constrain tegument-respirers to higher velocity patches, inconsistent with perceived views of their response to low flows. We found high velocity areas could act as refuges for some invertebrates during low flows, while low velocity patches, which are vulnerable to rapid flow recession, are important habitats for other invertebrates. Environmental flow management should focus on strategies that preserve these habitats during low flows.


Drought Refuges Riffle habitats Filter-feeders Respiration Tegument Gills 



Thanks to Jill Lancaster and Ben Wolfenden for providing helpful comments and suggestions for an earlier version of this manuscript. We are also grateful for the assistance of Ivars Reinfelds, Simon Williams, Matthew Russell, Stella Bennett, Tim Cooney, Kevin Brown and John Medway in the field and laboratory.

Supplementary material

10750_2016_2676_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)


  1. Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.CrossRefGoogle Scholar
  2. Atkinson, C. L., S. W. Golladay, S. P. Opsahl & A. P. Covich, 2009. Stream discharge and floodplain connections affect seston quality and stable isotopic signatures in a coastal plain stream. Journal of the North American Benthological Society 28: 360–370.CrossRefGoogle Scholar
  3. Baumer, C., R. Pirow & R. J. Paul, 2000. Respiratory adaptations to running-water microhabitats in mayfly larvae Epeorus sylvicola and Ecdyonurus torrentis. Ephemeroptera. Physiological & Biochemical Zoology 73: 77.CrossRefGoogle Scholar
  4. Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.CrossRefGoogle Scholar
  5. Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.CrossRefGoogle Scholar
  6. Boulton, A. J. & P. S. Lake, 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwater Biology 24: 123–141.CrossRefGoogle Scholar
  7. Boulton, A. J. & P. S. Lake, 2008. Effects of drought on stream insects and its ecological consequences. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: challenges to Populations. CAB International, Wallingford: 81–102.CrossRefGoogle Scholar
  8. Brodersen, K. P., O. Pedersen, I. R. Walker & M. T. Jensen, 2008. Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biology 53: 593–602.CrossRefGoogle Scholar
  9. Brooks, S., 1994. An efficient and quantitative aquatic benthos sampler for use in diverse habitats with variable flow regimes. Hydrobiologia 281: 123–128.CrossRefGoogle Scholar
  10. Brooks, A. J., B. C. Chessman & T. Haeusler, 2011. Macroinvertebrate traits distinguish unregulated rivers subject to water abstraction. Journal of the North American Benthological Society 30: 419–435.CrossRefGoogle Scholar
  11. Cade, B. S. & B. R. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412–420.CrossRefGoogle Scholar
  12. Cade, B. S., J. W. Terrell & R. L. Schroeder, 1999. Estimating effects of limiting factors with regression quantiles. Ecology 80: 311–323.CrossRefGoogle Scholar
  13. Chessman, B. C., 2015. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshwater Biology 60: 50–63.CrossRefGoogle Scholar
  14. Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.CrossRefGoogle Scholar
  15. Chiew, F. H. S., J. Teng, J. Vaze, D. A. Post, J. M. Perraud, D. G. C. Kirono & N. R. Viney, 2009. Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method. Water Resources Research 45: W10414.CrossRefGoogle Scholar
  16. Collier, K., 1994. Influence of nymphal size, sex and morphotype on microdistribution of Deleatidium (Ephemeroptera: Leptophlebiidae) in a New Zealand river. Freshwater Biology 31: 35–42.CrossRefGoogle Scholar
  17. Connolly, N. M., M. R. Crossland & R. G. Pearson, 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23: 251–270.CrossRefGoogle Scholar
  18. Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V. I. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.CrossRefGoogle Scholar
  19. Death, R. G., 2008. The effect of floods on aquatic invertebrate communities. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: challenges to Populations. CAB International, Wallingford: 103–121.CrossRefGoogle Scholar
  20. Dewson, Z. S., A. B. W. James & R. G. Death, 2007a. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.CrossRefGoogle Scholar
  21. Dewson, Z. S., A. B. W. James & R. G. Death, 2007b. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshwater Biology 52: 357–369.CrossRefGoogle Scholar
  22. Dodds, G. S. & F. L. Hisaw, 1924. Ecological studies of aquatic insects: size of respiratory organs in relation to environmental conditions. Ecology 5: 262–271.CrossRefGoogle Scholar
  23. Downes, B. J., J. Lancaster, R. Hale, A. Glaister & W. D. Bovill, 2011. Plastic and unpredictable responses of stream invertebrates to leaf pack patches across sandy-bottomed streams. Marine and Freshwater Research 62: 394–403.CrossRefGoogle Scholar
  24. Drake, J. A., 1984. Species aggregation: the influence of detritus in a benthic invertebrate community. Hydrobiologia 112: 109–115.CrossRefGoogle Scholar
  25. Eriksen, C. H., 1963. Respiratory regulation in Ephemera simulans (Walker) and Hexagenia limbata (Serville) (Ephemeroptera). Journal of Experimental Biology 40: 455–468.Google Scholar
  26. Fonseca, D. M. & D. D. Hart, 2001. Colonization history masks habitat preferences in local distributions of stream insects. Ecology 82: 2897–2910.CrossRefGoogle Scholar
  27. Fuller, R. L., C. Griego, J. D. Muehlbauer, J. Dennison & M. W. Doyle, 2010. Response of stream macroinvertebrates in flow refugia and high-scour areas to a series of floods: a reciprocal replacement study. Journal of the North American Benthological Society 29: 750–760.CrossRefGoogle Scholar
  28. Gallepp, G. W., 1977. Responses of caddisfly larvae (Brachycentrus spp.) to temperature, food availability and current velocity. American Midland Naturalist 98: 59–84.CrossRefGoogle Scholar
  29. Gaufin, A. R., R. Clubb & R. Newell, 1974. Studies on the tolerance of aquatic insects to low oxygen concentrations. The Great Basin Naturalist 34: 45–59.Google Scholar
  30. Georgian, T. & J. H. Thorp, 1992. Effects of microhabitat selection on feeding rates of net-spinning caddisfly larvae. Ecology 73: 229–240.CrossRefGoogle Scholar
  31. Golubkov, S. M. & T. M. Tiunova, 1989. Dependence of the respiration rate upon oxygen concentration in water for some rheophilous mayfly larvae (Ephemeroptera). Aquatic Insects 11: 147–151.CrossRefGoogle Scholar
  32. Golubkov, S. M., T. M. Tiunova & S. L. Kocharina, 1992. Dependence of the respiration rate of aquatic insects upon the oxygen concentration in running and still water. Aquatic Insects 14: 137–144.CrossRefGoogle Scholar
  33. Gooderham, J. & E. Tsyrlin, 2002. The Waterbug Book. CSIRO, Collingwood.Google Scholar
  34. Hansen, R. A., D. D. Hart & R. A. Merz, 1991. Flow mediates predator-prey interactions between triclad flatworms and larval black flies. Oikos 60: 187–196.CrossRefGoogle Scholar
  35. Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systemmatics 30: 363–395.CrossRefGoogle Scholar
  36. Hart, D. D. & R. A. Merz, 1998. Predator-prey interactions in a benthic stream community: a field test of flow-mediated refuges. Oecologia 114: 263–273.CrossRefGoogle Scholar
  37. Horrigan, N. & D. J. Baird, 2008. Trait patterns of aquatic insects across gradients of flow-related factors: a multivariate analysis of Canadian national data. Canadian Journal of Fisheries and Aquatic Sciences 65: 670–680.CrossRefGoogle Scholar
  38. James, A. B. W., Z. S. Dewson & R. G. Death, 2009. The influence of flow reduction on macroinvertebrate drift density and distance in three New Zealand streams. Journal of the North American Benthological Society 28: 220–232.CrossRefGoogle Scholar
  39. Kazmierczak, R. F., J. R. Webster & E. F. Benfield, 1987. Characteristics of seston in a regulated Appalachian Mountain river, U.S.A. Regulated Rivers: Research & Management 1: 287–300.CrossRefGoogle Scholar
  40. Koenker, R., 2015. Quantreg: quantile Regression.,
  41. Lake, S., N. Bond & P. Reich, 2006. Floods down rivers: from damaging to replenishing forces. Advances in Ecological Research 39: 41–62.CrossRefGoogle Scholar
  42. Lancaster, J. & L. R. Belyea, 2006. Defining the limits to local density: alternative views of abundance–environment relationships. Freshwater Biology 51: 783–796.CrossRefGoogle Scholar
  43. Lancaster, J. & B. J. Downes, 2010. Linking the hydraulic world of individual organisms to ecological processes: putting ecology into ecohydraulics. River Research and Applications 26: 385–403.CrossRefGoogle Scholar
  44. Lancaster, J. & B. J. Downes, 2013. Gas Exchange. In Lancaster, J. & B. J. Downes (eds), Aquatic Entomology. Oxford University Press, Oxford: 37–53.CrossRefGoogle Scholar
  45. Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.CrossRefGoogle Scholar
  46. Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94–100.CrossRefGoogle Scholar
  47. McKay, S. F. & A. J. King, 2006. Potential ecological effects of water extraction in small, unregulated streams. River Research and Applications 22: 1023–1037.CrossRefGoogle Scholar
  48. Miller, S. W., D. Wooster & J. Li, 2007. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology 52: 2494–2510.CrossRefGoogle Scholar
  49. Murphy, B. F. & B. Timbal, 2008. A review of recent climate variability and climate change in southeastern Australia. International Journal of Climatology 28: 859–879.CrossRefGoogle Scholar
  50. Murphy, J. F., P. S. Giller & M. A. Horan, 1998. Spatial scale and the aggregation of stream macroinvertebrates associated with leaf packs. Freshwater Biology 39: 325–337.CrossRefGoogle Scholar
  51. Nebeker, A. V., 1972. Effect of low oxygen concentration on survival and emergence of aquatic insects. Transactions of the American Fisheries Society 101: 675–679.CrossRefGoogle Scholar
  52. Palmer, M. A., C. M. Swan, K. Nelson, P. Silver & R. Alvestad, 2000. Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landscape Ecology 15: 563–576.CrossRefGoogle Scholar
  53. Peckarsky, B. L., S. C. Horn & B. Statzner, 1990. Stonefly predation along a hydraulic gradient: a field test of the harsh—benign hypothesis. Freshwater Biology 24: 181–191.CrossRefGoogle Scholar
  54. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.CrossRefGoogle Scholar
  55. Philipson, G. N. & B. H. S. Moorhouse, 1974. Observations on ventilatory and net-spinning activities of larvae of the genus Hydropsyche Pictet (Trichoptera, Hydropsychidae) under experimental conditions. Freshwater Biology 4: 525–533.CrossRefGoogle Scholar
  56. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.CrossRefGoogle Scholar
  57. Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.CrossRefGoogle Scholar
  58. R Core Team, 2015. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria,
  59. Robson, B. J., E. T. Chester & C. M. Austin, 2011. Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.CrossRefGoogle Scholar
  60. Rolls, R. J., C. Leigh & F. Sheldon, 2012. Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science 31: 1163–1186.CrossRefGoogle Scholar
  61. Schäfer, R. B., B. J. Kefford, L. Metzeling, M. Liess, S. Burgert, R. Marchant, V. Pettigrove, P. Goonan & D. Nugegoda, 2011. A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Science of The Total Environment 409: 2055–2063.CrossRefPubMedGoogle Scholar
  62. Sharpe, A. K. & B. J. Downes, 2006. The effects of potential larval supply, settlement and post-settlement processes on the distribution of two species of filter-feeding caddisflies. Freshwater Biology 51: 717–729.CrossRefGoogle Scholar
  63. Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.CrossRefGoogle Scholar
  64. Stewart, B. A., P. G. Close, P. A. Cook & P. M. Davies, 2013. Upper thermal tolerances of key taxonomic groups of stream invertebrates. Hydrobiologia 718: 131–140.CrossRefGoogle Scholar
  65. Suren, A. M. & I. G. Jowett, 2006. Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology 51: 2207–2227.CrossRefGoogle Scholar
  66. Tachet, H., J. P. Pierrot, C. Roux & M. Bournaud, 1992. Net-building behaviour of six Hydropsyche species (Trichoptera) in relation to current velocity and distribution along the Rhône River. Journal of the North American Benthological Society 11: 350–365.CrossRefGoogle Scholar
  67. Thomson, J. D., G. Weiblen, B. A. Thomson, S. Alfaro & P. Legendre, 1996. Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology 77: 1698–1715.CrossRefGoogle Scholar
  68. Verberk, W. C. E. P. & D. T. Bilton, 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biology Letters 9: 20130473.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Verberk, W. C. E. P. & P. Calosi, 2012. Oxygen limits heat tolerance and drives heat hardening in the aquatic nymphs of the gill breathing damselfly Calopteryx virgo (Linnaeus, 1758). Journal of Thermal Biology 37: 224–229.CrossRefGoogle Scholar
  70. Verberk, W. C. E. P., D. T. Bilton, P. Calosi & J. I. Spicer, 2011. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92: 1565–1572.CrossRefPubMedGoogle Scholar
  71. Verberk, W. C. E. P., C. G. E. van Noordwijk & A. G. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32: 531–547.CrossRefGoogle Scholar
  72. Walters, A. W., 2011. Resistance of aquatic insects to a low-flow disturbance: exploring a trait-based approach. Journal of the North American Benthological Society 30: 346–356.CrossRefGoogle Scholar
  73. Walters, A. W. & D. M. Post, 2011. How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. Ecological Applications 21: 163–174.CrossRefPubMedGoogle Scholar
  74. Wetmore, S. H., R. J. Mackay & R. W. Newbury, 1990. Characterization of the hydraulic habitat of Brachycentrus occidentalis, a filter-feeding caddisfly. Journal of the North American Benthological Society 9: 157–169.CrossRefGoogle Scholar
  75. Wiley, M. J. & S. L. Kohler, 1980. Positioning changes of mayfly nymphs due to behavioral regulation of oxygen consumption. Canadian Journal of Zoology 58: 618–622.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.NSW Department of Primary Industries - WaterWollongongAustralia

Personalised recommendations