, Volume 814, Issue 1, pp 5–17 | Cite as

Interactions between flooding and upland disturbance drives species diversity in large river floodplains

  • Mauricio E. AriasEmail author
  • Florian Wittmann
  • Pia Parolin
  • Michael Murray-Hudson
  • Thomas A. Cochrane


Understanding and predicting vegetation patterns in floodplains are essential for conservation and/or restoration of river floodplains subject to hydrological alterations. We propose a conceptual hydroecological model to explain the disturbance mechanisms driving species diversity across large river floodplains. These ecosystems harbor a unique set of flood-tolerant species different from the surrounding upland vegetation. In elevation gradients across pristine floodplains, the greater the flooding, the fewer the number of plant species. As terrain elevation increases, flood depth and duration decrease and it is more likely that species composition is influenced by external natural or human-driven disturbances. The spatial interaction between the natural flood regime and upland factors creates patterns of disturbance gradients that influence how floodplain vegetation establishes. In regions where upland conditions are subject to strong external disturbances, species diversity peaks at intermediate stages along the disturbance gradient. We demonstrate this concept with observations from the Central Amazon and Pantanal in Brazil, the Mekong’s Tonle Sap in Cambodia, and the Okavango Delta in Botswana. We discuss how this model could be further elaborated and validated to inform management of large river basins under the impact of upstream-induced flood pulse alterations.


Floodplain ecology Tropical rivers Plant species diversity Flood pulse concept Intermediate disturbance hypothesis Flood hydrology 



This manuscript was completed while M. E. Arias was a Giorgio Ruffolo Fellow in the Sustainability Science Program at Harvard University. Support from Italy’s Ministry for Environment, Land and Sea is gratefully acknowledged. Comments from two reviewers were very helpful in improving the original manuscript.


  1. Arias, M.E., 2013. Impacts of hydrological alterations in the Mekong Basin to the Tonle Sap ecosystem (PhD thesis). University of Canterbury, Christchurch.Google Scholar
  2. Arias, M. E., T. A. Cochrane, M. Kummu, T. J. Killeen, T. Piman & B. S. Caruso, 2012. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin. Journal of Environmental Management 112: 53–66.CrossRefPubMedGoogle Scholar
  3. Arias, M. E., T. A. Cochrane, D. Norton, T. J. Killeen & P. Khon, 2013. The flood pulse as the underlying driver of vegetation in the largest wetland and fishery of the Mekong Basin. AMBIO 42: 864–876.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bayley, P. B., 1995. Understanding large river-floodplain ecosystems. BioScience 45: 153–158.CrossRefGoogle Scholar
  5. Betbeder, J., V. Gond, F. Frappart, N. N. Baghdadi, G. Briant & E. Batholome, 2014. Mapping of central Africa forested wetlands using remote sensing. IEEE Journal of selected topics in Applied Earth Observation and Remote Sensing 7: 532–542.CrossRefGoogle Scholar
  6. Coe, M. T., T. R. Marthews, M. H. Costa, D. R. Galbraith, N. L. Greenglass, H. M. A. Imbuzeiro, N. M. Levine, Y. Malhi, P. R. Moorcroft, M. N. Muza, T. L. Powell, S. R. Saleska, L. A. Solorzano & J. Wang, 2013. Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1619): 20120155.CrossRefGoogle Scholar
  7. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.CrossRefPubMedGoogle Scholar
  8. Damasceno-Junior, G. A., J. Semir, F. A. M. Dos Santos & H. de Freitas Leitão-Filho, 2005. Structure, distribution of species and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil. Flora-Morphology, Distribution, Functional Ecology of Plants 200: 119–135.CrossRefGoogle Scholar
  9. Davidson, T. A., A. W. Mackay, P. Wolski, R. Mazebedi, M. Murray-Hudson & M. Todd, 2012. Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed, sub-tropical wetland. Freshwater Biology 57: 1253–1265.CrossRefGoogle Scholar
  10. De Groot, R., L. Brander, S. Van Der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi & L. Hein, 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1: 50–61.CrossRefGoogle Scholar
  11. Dubs, B., 1992. Observations on the differentiation of woodland and wet savanna habitats in the Pantanal of Mato Grosso, Brazil. Nature and dynamics of forest-savanna boundaries.-Chapman & Hall, London.Google Scholar
  12. European Commission, 2015. The EU Water Framework Directive – integrated river basin management for Europe – Environment – European Commission [WWW Document]., Accessed on 3 Nov 15.
  13. Ferreira, L. V. & T. J. Stohlgren, 1999. Effects of river level fluctuation on plant species richness, diversity, and distribution in a floodplain forest in Central Amazonia. Oecologia 120: 582–587.CrossRefPubMedGoogle Scholar
  14. Foti, R., M. del Jesus, A. Rinaldo & I. Rodriguez-Iturbe, 2012. Hydroperiod regime controls the organization of plant species in wetlands. Proceedings of the National Academy of Sciences 109: 19596–19600.CrossRefGoogle Scholar
  15. Glenn, E. P., K. W. Flessa & J. Pitt, 2013. Restoration potential of the aquatic ecosystems of the Colorado River Delta, Mexico: introduction to special issue on “Wetlands of the Colorado River Delta”. Ecological Engineering 59: 1–6.CrossRefGoogle Scholar
  16. Grill, G., B. Lehner, A. E. Lumsdon, G. K. MacDonald, C. Zarfl & C. Reidy Liermann, 2015. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters 10: 015001.CrossRefGoogle Scholar
  17. Gumbricht, T., J. McCarthy & T. S. McCarthy, 2004a. Channels, wetlands and islands in the Okavango Delta, Botswana, and their relation to hydrological and sedimentological processes. Earth Surface Processes and Landforms 29: 15–29.CrossRefGoogle Scholar
  18. Gumbricht, T., P. Wolski, P. Frost & T. S. McCarthy, 2004b. Forecasting the spatial extent of the annual flood in the Okavango delta, Botswana. Journal of Hydrology 290: 178–191.CrossRefGoogle Scholar
  19. Hamilton, S. K., 2010. Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657: 19–35.CrossRefGoogle Scholar
  20. Hamilton, S. K., S. J. Sippel & J. M. Melack, 2002. Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research: Atmospheres 107: 8038.CrossRefGoogle Scholar
  21. Holtgrieve, G. W., M. E. Arias, K. N. Irvine, E. J. Ward, M. Kummu, J. Koponen, J. E. Richey & D. Lamberts, 2013. Ecosystem metabolism and support of freshwater capture fisheries in the Tonle Sap Lake, Cambodia. PLoS One 8: e71395.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jardine, T. D., N. R. Bond, M. A. Burford, M. J. Kennard, D. P. Ward, P. Bayliss, P. M. Davies, M. M. Douglas, S. K. Hamilton, J. M. Melack, R. J. Naiman, N. E. Pettit, B. J. Pusey, D. M. Warfe & S. E. Bunn, 2015. Does flood rhythm drive ecosystem responses in tropical riverscapes? Ecology 96: 684–692.CrossRefPubMedGoogle Scholar
  23. Junk, W. J. & M. T. F. Piedade, 1997. Plant life in the floodplain with special reference to herbaceous plants. The Central Amazon Floodplain. Ecology of a Pulsing System. Springer, Berlin: 147–186.CrossRefGoogle Scholar
  24. Junk, W.J. & Wantzen, K.M. 2004. The Flood pulse concept: new aspects, approaches, and applications – an update. In: Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, RAP Publication 2004/17. FAO, Bangkok: 117–140.Google Scholar
  25. Junk, W.J., P.B. Bayley & Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. In: International Large River Symposium, Canadian Special Publication of Fisheries and Aquatic Sciences: 110–127.Google Scholar
  26. Junk, W. J., M. T. F. Piedade, J. Schöngart, M. Cohn-Haft, J. M. Adeney & F. Wittmann, 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31: 623–640.CrossRefGoogle Scholar
  27. Junk, W. J., S. An, C. M. Finlayson, B. Gopal, J. Květ, S. A. Mitchell, W. J. Mitsch & R. D. Robarts, 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75: 151–167.CrossRefGoogle Scholar
  28. Kern, J. & Darwich, A., 1997. Nitrogen turnover in the Varzea. In: The central Amazon floodplain. Ecology of a pulsing system. Springer, Berlin: 119–136.Google Scholar
  29. Lehner, B. & P. Döll, 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296: 1–22.CrossRefGoogle Scholar
  30. Lehner, B., C. R. Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J. C. Robertson, R. Rödel, N. Sindorf & D. Wisser, 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494–502.CrossRefGoogle Scholar
  31. Lesack, L. F. & J. M. Melack, 1995. Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Water Resources Research 31: 329–345.CrossRefGoogle Scholar
  32. Lewis Jr, W. M., S. K. Hamilton, M. A. Lasi, M. Rodríguez & J. E. SAUNDERS III, 2000. Ecological determinism on the Orinoco floodplain. BioScience 50: 681–692.CrossRefGoogle Scholar
  33. Lobón-Cerviá, J., L. L. Hess, J. M. Melack & C. A. R. M. Araujo-Lima, 2015. The importance of forest cover for fish richness and abundance on the Amazon floodplain. Hydrobiologia 750: 245–255.CrossRefGoogle Scholar
  34. Mackey, R. L. & D. J. Currie, 2001. The diversity-disturbance relationship: is it generally strong and peaked? Ecology 82: 3479–3492.Google Scholar
  35. Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li & C. A. Nobre, 2008. Climate change, deforestation, and the fate of the Amazon. Science 319: 169–172.CrossRefPubMedGoogle Scholar
  36. McDonald, J.A., P., Bunnat, P. Virak & Bunton, L., 1997. Plant communities of the Tonle Sap floodplain. UNESCO/IUCN/WI.Google Scholar
  37. Melack, J.M., & Hess, L.L., 2011. Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Amazonian floodplain forests. Springer, Berlin: 43–59.Google Scholar
  38. Mitsch, W. J. & J. W. Day Jr, 2006. Restoration of wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: experience and needed research. Ecological Engineering 26: 55–69.CrossRefGoogle Scholar
  39. Molino, J.-F. & D. Sabatier, 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294: 1702–1704.CrossRefPubMedGoogle Scholar
  40. Murray-Hudson, M., 2009. Floodplain vegetation responses to flood regime in the seasonal Okavango Delta, Botswana (PhD thesis). University of Florida, Environmental Engineering Sciences, Gainesville, FL.Google Scholar
  41. Murray-Hudson, M., F. Combs, P. Wolski & M. T. Brown, 2011. A vegetation-based hierarchical classification for seasonally pulsed floodplains in the Okavango Delta, Botswana. African Journal of Aquatic Science 36: 223–234.CrossRefGoogle Scholar
  42. Murray-Hudson, M., P. Wolski, L. Cassidy, M. T. Brown, K. Thito, K. Kashe & E. Mosimanyana, 2015. Remote sensing-derived hydroperiod as a predictor of floodplain vegetation composition. Wetlands Ecology and Management 23: 603–616.CrossRefGoogle Scholar
  43. Naiman, R. J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.CrossRefGoogle Scholar
  44. Nesbitt, H. J., 1997. Rice production in Cambodia. International Rice Research Institute, Manila.Google Scholar
  45. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.CrossRefPubMedGoogle Scholar
  46. Nunes da Cunha, C. & W. J. Junk, 2001. Distribution of woody plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. International Journal of Ecology and Environmental Sciences 27: 63–70.Google Scholar
  47. Parolin, P., & Wittmann, F., 2010. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems. AoB Plants.Google Scholar
  48. Parolin, P., C. Lucas, M. T. F. Piedade & F. Wittmann, 2010. Drought responses of flood-tolerant trees in Amazonian floodplains. Annals of botany 105: 129–139.CrossRefPubMedGoogle Scholar
  49. Petraitis, P.S., R.E., Latham, & Niesenbaum, R.A., 1989. The maintenance of species diversity by disturbance. Quarterly Review of Biology 64: 393–418.CrossRefGoogle Scholar
  50. Petry, P., P. B. Bayley & D. F. Markle, 2003. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. Journal of Fish Biology 63: 547–579.CrossRefGoogle Scholar
  51. Pollock, M. M., R. J. Naiman & T. A. Hanley, 1998. Plant species richness in riparian wetlands—a test of biodiversity theory. Ecology 79: 94–105.Google Scholar
  52. Porter, J.W., & Muzila, I.L., 1989. Aspects of swamp hydrology in the Okavango. Botswana Notes and Records 21: 73–91.Google Scholar
  53. Pott, A., & Pott, V.J., 1994. Plantas do pantanal. Centro de Pesquisa Agropecuária do Pantanal, Serviço de Produção de Informação.Google Scholar
  54. Prance, G. T. & G. B. Schaller, 1982. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 34: 228–251.CrossRefGoogle Scholar
  55. Ratter, J. A., A. Pott, V. J. Pott, C. da Cunha & M. Haridasan, 1988. Observations on woody vegetation types in the Pantanal and at Corumbá, Brazil. Notes RBG, Edinburgh. 45 pp.Google Scholar
  56. Roxburgh, S. H., K. Shea & J. B. Wilson, 2004. The intermediate disturbance hypothesis: patch dynamics and mechanisms for species coexistence. Ecology 85: 359–371.CrossRefGoogle Scholar
  57. Rudorff, C. M., J. M. Melack & P. D. Bates, 2014. Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resources Research 50: 619–634.CrossRefGoogle Scholar
  58. Saatchi, S., W. Buermann, H. ter Steege, S. Mori & T. B. Smith, 2008. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment 112: 2000–2017.CrossRefGoogle Scholar
  59. Sabo, J. L., R. Sponseller, M. Dixon, K. Gade, T. Harms, J. Heffernan, A. Jani, G. Katz, C. Soykan & J. Watts, 2005. Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86: 56–62.CrossRefGoogle Scholar
  60. Sarkkula, J., J., Koponen, S., Hellsten, M., Keskinen, & Kiirikki, M., 2003. MRCS/WUP-FIN Model Report: Modelling Tonle Sap watershed and lake processes for environmental change assessment. MRC/WUP-FIN.Google Scholar
  61. Smith, P.A., 1976. An outline of the vegetation of the Okavango drainage system. Presented at the Symposium on the Okavango Delta and its future utilization, Botswana Society, National Museum, Gaborone.Google Scholar
  62. Snowy Mountains Engineering Corporation, 1989. Ecological Zoning Okavango Delta. Ministry of Local Government and Lands, Gaborone.Google Scholar
  63. Sullivan, P., E. Gaiser, D. Surratt, D. Rudnick, S. Davis & F. Sklar, 2014. Wetland ecosystem response to hydrologic restoration and management: the everglades and its urban-agricultural boundary (FL, USA). Wetlands 34: 1–8.CrossRefGoogle Scholar
  64. Tanentzap, A.J., W.G., Lee, & Schulz, K.A.C., 2013. Niches drive peaked and positive relationships between diversity and disturbance in natural ecosystems. Ecosphere 4: 133.Google Scholar
  65. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  66. Van Trung, N., J.-H., Choi, & Won, J.-S., 2012. A land cover variation model of water level for the floodplain of Tonle Sap, Cambodia, derived from ALOS PALSAR and MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1–16.Google Scholar
  67. Warfe, D. M., N. E. Pettit, P. M. Davies, B. J. Pusey, S. K. Hamilton, M. J. Kennard, S. A. Townsend, P. Bayliss, D. P. Ward, M. M. Douglas, M. A. Burford, M. Finn, S. E. Bunn & I. A. Halliday, 2011. The “wet–dry” in the wet–dry tropics drives river ecosystem structure and processes in northern Australia. Freshwater Biology 56: 2169–2195.CrossRefGoogle Scholar
  68. Wassmann, R. & C. Martius, 1997. Methane emissions from the Amazon floodplain. The central Amazon floodplain. Ecology of a pulsing system. Springer, Berlin: 137–145.CrossRefGoogle Scholar
  69. Weber, G. E., 1997. Modelling nutrient fluxes in floodplain lakes. The central Amazon floodplain. Ecology of a pulsing system. Springer, Berlin: 109–117.CrossRefGoogle Scholar
  70. Wilson, B., & Dinçer, T., 1976. An introduction to the hydrology and hydrography of the Okavango Delta. Presented at the Symposium on the Okavango Delta and its future utilization, Botswana Society, National Museum, Gaborone.Google Scholar
  71. Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere, C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.CrossRefPubMedGoogle Scholar
  72. Wittmann, F., 2012. Tree species composition and diversity in Brazilian freshwater floodplains. Nova Science Publishers, New York.Google Scholar
  73. Wittmann, F., D. Anhuf & W. J. Junk, 2002. Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. Journal of Tropical Ecology 18: 805–820.CrossRefGoogle Scholar
  74. Wittmann, F., W. J. Junk & M. T. F. Piedade, 2004. The varzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196: 199–212.CrossRefGoogle Scholar
  75. Wittmann, F., J. Schongart, J. C. Montero, T. Motzer, W. J. Junk, M. T. F. Piedade, H. L. Queiroz & M. Worbes, 2006. Tree species composition and diversity gradients in white-water forests across the Amazon Basin. Journal of Biogeography 33: 1334–1347.CrossRefGoogle Scholar
  76. Wittmann, F., B. T. Zorzi, F. A. T. Tizianel, M. V. S. Urquiza, R. R. Faria, N. M. e Sousa, É. de Souza Módena, R. M. Gamarra & A. L. M. Rosa, 2008. Tree species composition, structure, and aboveground wood biomass of a riparian forest of the Lower Miranda River, southern Pantanal, Brazil. Folia Geobotânica 43: 397–411.CrossRefGoogle Scholar
  77. Wittmann, F., J. Schöngart & W. Junk, 2011. Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In Junk, W. J., M. T. F. Piedade, F. Wittmann, J. Schöngart & P. Parolin (eds), Amazonian floodplain forests, ecological studies. Springer, Dordrecht: 61–102.Google Scholar
  78. Wittmann, F., E. Householder, M. T. Piedade, R. L. de Assis, J. Schöngart, P. Parolin & W. J. Junk, 2013. Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36: 690–707.CrossRefGoogle Scholar
  79. Zeilhofer, P. & M. Schessl, 2000. Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso, Brazil. Journal of Biogeography 27: 159–168.CrossRefGoogle Scholar
  80. Zelnik, I. & A. Čarni, 2008. Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Community Ecology 9: 1–9.CrossRefGoogle Scholar
  81. Zurbrügg, R., J. Wamulume, R. Kamanga, B. Wehrli & D. B. Senn, 2012. River-floodplain exchange and its effects on the fluvial oxygen regime in a large tropical river system (Kafue Flats, Zambia). Journal of Geophysical Research: Biogeosciences 117: G03008.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Sustainability Science ProgramHarvard UniversityCambridgeUSA
  2. 2.Department of BiogeochemistryMax Planck Institute for ChemistryMainzGermany
  3. 3.University of HamburgHamburgGermany
  4. 4.Okavango Research InstituteUniversity of BotswanaMaunBotswana
  5. 5.Department of Civil and Natural Resources EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations