, Volume 780, Issue 1, pp 85–97 | Cite as

Risk assessment of non-native fishes in the catchment of the largest Central-European shallow lake (Lake Balaton, Hungary)

  • Árpád FerinczEmail author
  • Ádám Staszny
  • András Weiperth
  • Péter Takács
  • Béla Urbányi
  • Lorenzo Vilizzi
  • Gábor Paulovits
  • Gordon H. Copp


The Fish Invasiveness Screening Kit (FISK) has proved to be a useful tool for assessing and screening the risk posed by potentially invasive fish species in larger risk assessment (RA) areas (i.e. country or multi-country level). In the present study, non-native freshwater fishes were screened for a smaller RA area, the closed and vulnerable but economically important drainage basin of Lake Balaton (Hungary). Receiver operator characteristic analysis of FISK scores for 26 fish species screened by four assessors identified 21 species with scores of ≥11.4 to pose a ‘high risk’ of being invasive, with five species ranked as ‘medium risk’ and none as ‘low risk’. The highest scoring species were gibel carp Carassius gibelio and black bullhead Ameiurus melas, with three Ponto-Caspian Gobiidae identified as amongst the species posing the potentially greatest threat to the catchment. The results of the present study indicate that FISK can be applied to risk assessment areas of smaller geographical scale.


FISK Shallow lakes Invasibility Hazard identification Biological invasions 



This study was supported by the Research Centre of Excellence-9878/2015/FEKUT. Gábor Paulovits was supported by the EuLakes Project (Central Europe Programme). Péter Takács was supported by OTKA PD115801: Functional diversity of the Carpathian fish fauna. Preliminary studies and database development.


  1. Adamek, Z. & M. A. Siddiqui, 1997. Reproduction parametres in a natural population of topmouth gudgeon, Pseudorasbora parva, and its condition and food characteristics with respect to sex dissimilarities. Polish Archives of Hydrobiology 44: 145–152.Google Scholar
  2. Almeida, D., F. Ribeiro, P. M. Leunda, L. Vilizzi & G. H. Copp, 2013. Effectiveness of FISK, an invasiveness screening tool for non-native freshwater fishes, to perform risk identification assessments in the Iberian Peninsula. Risk Analysis 33: 1404–1413.CrossRefPubMedGoogle Scholar
  3. Bănărescu, P., 1964. Pisces – Osteichthyes. Fauna Republicii Populare Romine, 13th edn. Acad. RPR, Bucuresti: 959 pp. [In Romanian]Google Scholar
  4. Bănărescu, P., 1990. Distribution and dispersal of freshwater animals in North America and Eurasia., Zoogeography of Freshwaters Aula-Verlag, Wiesbaden: 91–92.Google Scholar
  5. Benkő-Kiss, Á., Á. Ferincz, N. Kováts & G. Paulovits, 2013. Spread and distribution pattern of Sinanodonta woodiana in Lake Balaton. Knowledge and Management of Aquatic Ecosystems 408: 1–7.Google Scholar
  6. Bíró, P., 1972. Neogobius fluviatilis in Lake Balaton – a Ponto-Caspian goby new to the fauna of central Europe. Journal of Fish Biology 4: 249–255.CrossRefGoogle Scholar
  7. Bíró, P., 1997. Temporal variation in Lake Balaton and its fish population. Ecology of Freshwater Fish 6: 196–216.CrossRefGoogle Scholar
  8. Braig, E. C. & D. L. Johnson, 2003. Impact of black bullhead (Ameiurus melas) on turbidity in a diked wetland. Hydrobiologia 490: 11–21.CrossRefGoogle Scholar
  9. Britton, J. R., G. D. Davies, M. Brazier & A. C. Pinder, 2007. A case study on the population ecology of a topmouth gudgeon Pseudorasbora parva population in the UK and the implications for native fish communities. Aquatic Conservation 17: 749–759.CrossRefGoogle Scholar
  10. Britton, J. R., G. D. Davies & C. Harrod, 2009. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biological Invasions 12: 1533–1542.CrossRefGoogle Scholar
  11. Britton, J. R., J. Cucherousset, J. Grey & R. E. Gozlan, 2011. Determining the strength of exploitative competition from an introduced fish: roles of density, biomass and body size. Ecology of Freshwater Fish 20: 74–79.CrossRefGoogle Scholar
  12. Britton, J. R., J. Cucherousset, G. D. Davies, M. J. Godard & G. H. Copp, 2010a. Non-native fishes and climate change: predicting species responses to warming temperatures in a temperate region. Freshwater Biology 55: 1130–1141.CrossRefGoogle Scholar
  13. Britton, J. R., G. D. Davies & M. Brazier, 2010b. Towards the successful control of the invasive Pseudorasbora parva in the UK. Biological Invasions 12: 125–131.CrossRefGoogle Scholar
  14. Britton, J. R., G. D. Davies & C. Harrod, 2010c. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biological Invasions 12: 1533–1542.CrossRefGoogle Scholar
  15. Copp, G. H., 2013. The Fish Invasiveness Screening Kit (FISK) for non-native freshwater fishes – a summary of current applications. Risk Analysis 33: 1394–1396.CrossRefPubMedGoogle Scholar
  16. Copp, G. H., P. G. Bianco, N. G. Bogutskaya, T. Erős, I. Falka, M. T. Ferreira, M. G. Fox, J. Freyhof, R. E. Gozlan, J. Grabowska, V. Kováč, R. Moreno-Amich, A. M. Naseka, M. Peňáz, M. Povž, M. Przybylski, M. Robillard, I. C. Rusell, S. Stakėnas, S. Šumer, A. Vila-Gispert & C. Wiesner, 2005a. To be or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242–262.CrossRefGoogle Scholar
  17. Copp, G. H., R. Garthwaite & R. E. Gozlan, 2005b. Risk identification and assessment of non-native freshwater fishes: concepts and perspectives on protocols for the UK. Cefas Science Technical Report. Cefas, Lowestoft: 36 pp. ( (Accessed 11 Jan 2016)
  18. Copp, G. H., L. Vilizzi, J. Mumford, G. V. Fenwick, M. J. Godard & R. E. Gozlan, 2009. Calibration of FISK, an invasiveness screening tool for non-native freshwater fishes. Risk Analysis 29: 457–467.CrossRefPubMedGoogle Scholar
  19. Coucherousset, J., J. M. Paillisson, A. Carpentier, M. C. Eybert & J. D. Olden, 2006. Habitat use of an artificial wetland by the invasive catfish Ameiurus melas. Ecology of Freshwater Fish 15: 589–596.CrossRefGoogle Scholar
  20. Economidis, P. S., E. Dimitriou, R. Pagoni, E. Michaloudi & L. Natsis, 2000. Introduced and translocated fish species in the inland waters of Greece. Fisheries Management and Ecology 7: 239–250.CrossRefGoogle Scholar
  21. Elvira, B., 1984. First record of the North American catfish Ictalurus melas (Rafinesque, 1820) (Pisces, Ictaluridae) in Spanish waters. Cybium 8: 96–98.Google Scholar
  22. EPPO, 2002. EPPO Standards. Pest Risk Analysis. PM 5/2 (revised). EPPO Bulletin 32: 231–233.CrossRefGoogle Scholar
  23. Erős, T., P. Takács, P. Sály, A. Specziár, Á. I. György & P. Bíró, 2008. Az amurgéb (Perccottus glenii Dybowski, 1877) megjelenése a Balaton vízgyűjtőjén. [First occurrence of Amur sleeper (Perccottus glenii Dybowski, 1877) int he Balaton-catchment] Halászat 101: 75–77. (in Hungarian)Google Scholar
  24. Erős, T., A. Specziár & P. Bíró, 2009. Assessing fish assemblages in reed habitats of a large shallow lake – A comparison between gillnetting and electric fishing. Fisheries Research 96: 70–76.CrossRefGoogle Scholar
  25. Ferincz, Á., Á. Staszny, A. Ács, A. Weiperth, I. Tátrai & G. Paulovits, 2012. Long-term development of fish assemblage in Lake Fenéki (Kis-Balaton Water Protection System, Hungary): succession, invasion and stabilization. Acta Zoologica Scientarum Academiae Hungarica 58 (Supplementum 1): 3–18.Google Scholar
  26. Ferincz, Á., Á. Staszny, A. Weiperth, S. Sütő, G. Soczó, A. Ács, N. Kováts & G. Paulovits, 2014. Adatok a Dél-Balatoni berekterületek halfaunájához. [Data to the fish fauna of southern wetlands of Lake Balaton] Natura Somogyiensis 24: 279–286. (in Hungarian with English summary)Google Scholar
  27. Ferincz, Á., Z. S. Horváth, Á. Staszny, A. Ács, N. Kováts, C. F. Vad, J. Csaba, S. Sütő & G. Paulovits, 2016. Desiccation frequency drives local invasions of non-native gibel carp (Carassius gibelio) in the catchment of a large, shallow lake (Lake Balaton, Hungary). Fisheries Research 173: 37–44.CrossRefGoogle Scholar
  28. Gante, H. F. & C. D. Santos, 2002. First records of North American catfish Ictalurus melas (Rafinesque, 1820) in Portugal. Journal of Fish Biology 61: 1643–1646.CrossRefGoogle Scholar
  29. GB Non-native Species Secretariat, (2014) High risk species eradicated from GB: Black bullhead catfish Ameiurus melas. ( (Accessed 22 Jul 2014)
  30. Gozlan, R. E., S. St-Hilaire, S. W. Feist, P. Martin & M. L. Kent, 2005. An emergent infectious disease threatens European fish biodiversity. Nature 435: 1046.CrossRefPubMedGoogle Scholar
  31. Gozlan, R. E., D. Andreou, T. Asaeda, K. Beyer, R. Bouhadad, D. Burnard, N. Caiola, P. Cakic, V. Djikanovic, H. R. Esmaeili, I. Falka, D. Golicher, A. Harka, G. Jeney, V. Kováč, J. Musil, A. Nocita, M. Povž, N. Poulet, T. Virbickas, C. Wolter, A. S. Tarkan, E. Tricarico, T. Trichkova, H. Verreycken, A. Witkowski, C.-G. Zhang, I. Zweimueller & J. R. Britton, 2010. Pan-continental invasion of Pseudorasbora parva: towards a better understanding of freshwater fish invasions. Fish & Fisheries 11: 315–340.CrossRefGoogle Scholar
  32. Györe, K., 1995. Magyarország természetesvízi halai. [Freshwater fishes of Hungary] Környezetgazdálkodási Intézet: 1–339. (in Hungarian)Google Scholar
  33. Halasi-Kovács, B., L. Antal & S. A. Nagy, 2011. First record of a Ponto-caspian Knipowitschia species (Gobiidae) in the Carpathian basin. Hungary Cybium 35: 257–258.Google Scholar
  34. Harka, Á., 1997. Terjed vizeinkben a fekete törpeharcsa. [The spreadnig of black bullhead of Hungarian waters] Halászat 90 (3): 109–110. (in Hungarian)Google Scholar
  35. Harka, Á. 1998. Magyarország faunájának új halfaja: az amurgéb (Perccottus glenii Dybowski, 1877). [New species for Hungarian ichtyofauna: the Amur sleeper (Perccottus glenii Dybowski, 1877)] Halászat 91 (1): 32–33. (in Hungarian)Google Scholar
  36. Harka, Á. & Z. Sallai, 1999. Az amurgéb (Perccottus glenii Dybowski, 1877) morfológiai jellemzése, élőhelye és terjedése Magyarországon. [Morphological charcterization, habitat and spread of Amur sleeper (Perccottus glenii Dybowski, 1877) in Hungary] Halászat 92 (1), 33–36. (in Hungarian)Google Scholar
  37. Harka, Á. & Z. Sallai, 2004. Magyarország halfaunája. [The fish fauna of Hungary] Nimfea Természetvédelmi Egyesület, Szarvas: 269 pp. (in Hungarian)Google Scholar
  38. Herman, O., 1887. A magyar halászat könyve. [The book of Hungarian fisheries] Magyar Természettudományi Társulat Budapest, reprint 2008, Homonnai kiadó: 642 pp. (in Hungarian)Google Scholar
  39. Herman, O., 1890. Ángolna a Balatonban és a Velenczei-tóban. [Eel in Lake Balaton and Lake Velencei] Természettudományi Közlöny 255: 603–604. (in Hungarian)Google Scholar
  40. Holčík, J., 1980. Carassius auratus (Pisces) in the Danube River. Acta Scientarum Naturale Brno 14(11): 1–43.Google Scholar
  41. Jurajda, P., M. Vassilev, M. Polačik & T. Trichkova, 2006. A first record of Perccottus glenii (Perciformes: Odontobutidae) in the Danube River in Bulgaria. Acta Zoologica Bulgarica 58: 279–282.Google Scholar
  42. Kati, S., A. Mozsár, D. Árva, J. N. Cozma, I. Czeglédi, L. Antal, S. A. Nagy & T. Erős, 2015. Feeding ecology of the invasive Amur sleeper (Perccottus glenii Dybowski, 1877) in Central Europe. International Review of Hydrobiology 100: 116–128.CrossRefGoogle Scholar
  43. Konishi, M. & K. Takata, 2004. Size-dependent male–male competition for a spawning substrate between Pseudorasbora parva and Pseudorasbora pumila. Ichthyological Research 51: 184–187.CrossRefGoogle Scholar
  44. Kornis, M. S., N. Mercado-Silva & M. J. Van der Zanden, 2012. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. Journal of Fish Biology 80: 235–285.CrossRefPubMedGoogle Scholar
  45. Korponai, J., M. Braun, K. Buczkó, I. Gyulai, L. Forró, J. Nédli & I. Papp, 2010. Transition from shallow lake to a wetland: a multi-proxy case study in Zalavári Pond, Lake Balaton, Hungary. Hydrobiologia 641: 225–244.CrossRefGoogle Scholar
  46. Koščo, J., S. Lusk, K. Halačka & V. Lusková, 2003. The expansion and occurrence of the Amur sleeper (Perccottus glenii) in eastern Slovakia. Folia Zoologia 52: 329–336.Google Scholar
  47. Koščo, J., L. Košuthová, P. Košuth & L. Pekárik, 2010. Non-native fish species in Slovak waters: origins and present status. Biologia 65: 1057–1063.Google Scholar
  48. Lawson, L. L., J. E. Hill, L. Vilizzi, S. Hardin & G. H. Copp, 2013. Revisions of the Fish Invasiveness Scoring Kit (FISK) for its application in warmer climatic zones, with particular reference to Peninsular Florida. Risk Analysis 33: 1414–1431.CrossRefPubMedGoogle Scholar
  49. Lusk, S., V. Lusková & L. Hanel, 2010. Alien fish species in the Czech Republic and their impact on the native fish fauna. Folia Zoologica 59: 57–72.Google Scholar
  50. Mastitsky, S. E., A. Y. Karatayev, L. E. Burlakova & B. V. Adamovich, 2010. Non-native fishes of Belarus: diversity, distribution, and risk classification using the Fish Invasiveness Screening Kit (FISK). Aquatic Invasions 5: 103–114.CrossRefGoogle Scholar
  51. Mendoza, R., S. Luna & C. Aguilera, 2015. Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biological Invasions 17: 3491–3502.CrossRefGoogle Scholar
  52. Muskó, I. B., M. Bence & C. Balogh, 2008. Occurrence of a new Ponto-Caspian invasive species, Cordylophora caspia (Pallas, 1771) (Hydrozoa: Clavidae) in Lake Balaton (Hungary). Acta Zoologica Academiae Scientiarum Hungaricae 54: 169–179.Google Scholar
  53. Nalbant, T., K. W. Battes, F. Pricope & D. Ureche, 2004. First record of the amur sleeper Perccottus glenii (Pisces: Perciformes: Odontobutidae) in Romania. Travaux du Museum National d’Histoire Naturelle 47: 279–284.Google Scholar
  54. Novomeská, A. & V. Kováč, 2009. Life-history traits of non-native black bullhead Ameiurus melas with comments on its invasive potential. Journal of Applied Ichthyology 25: 79–84.CrossRefGoogle Scholar
  55. Nowak, M., W. Popek & P. Epler, 2008. Range expansion of an invasive alien species, Chinese sleeper, (Perccottus glenii Dybowski, 1877) (Teleostei: Odontobutidae) in the Vistula river drainage. Acta Ichthyologica et Piscatoria 38: 37–40.CrossRefGoogle Scholar
  56. Onikura, N., J. Nakajima, R. I. H. Mizutani, M. K. S. Fukuda & T. Mukai, 2011. Evaluating the potential for invasion by alien freshwater fishes in northern Kyushu Island, Japan, using the Fish Invasiveness Scoring Kit. Ichthyological Research 58: 382–387.CrossRefGoogle Scholar
  57. Paulovits, G., Á. Ferincz, Á. Staszny, A. Weiperth, I. Tátrai, J. Korponai, K. Mátyás & N. Kováts, 2014. Long-term changes in the fish assemblage structure of a shallow eutrophic reservoir (Lake Hídvégi, Hungary), with special reference to the exotic Carassius gibelio. International Review of Hydrobiology 5: 373–381.CrossRefGoogle Scholar
  58. Pedicillo, G., A. Bicchi, V. Angeli, A. Carosi, P. Viali & M. Lorenzoni, 2008. Growth of black bullhead Ameiurus melas (Rafinesque, 1820) in Corbara Reservoir (Umbria – Italy). Knowledge and Management of Aquatic Ecosystems 389: 05.CrossRefGoogle Scholar
  59. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.CrossRefGoogle Scholar
  60. Perdikaris, C., N. Koutsikos, L. Vardakas, D. Kommatas, P. Simonović, I. Paschos, V. Detsis, L. Vilizzi & G. H. Copp, 2015. Risk screening of non-native, translocated and traded aquarium freshwater fish in Greece using FISK. Fisheries Management and Ecology. doi: 10.1111/fme.12149.Google Scholar
  61. Piria, M., M. Povz, L. Vilizzi, D. Zanella, P. Simonović & G. H. Copp, 2015. Risk screening of non-native freshwater fishes in Croatia and Slovenia using the Fish Invasiveness Screening Kit. Fisheries Managment and Ecology. doi: 10.1111/fme.12147.Google Scholar
  62. Povž, M. & S. Šumer, 2006. A brief review of non-native freshwater fishes in Slovenia. Journal of Applied Ichyiology 21: 316–318.Google Scholar
  63. Puntila, R., L. Vilizzi, M. Lehtiniemi & G. H. Copp, 2013. First Application of FISK, the Freshwater Fish Invasiveness Screening Kit, in Northern Europe: Example of Southern Finland. Risk Analysis 33: 1397–1403.CrossRefPubMedGoogle Scholar
  64. R Development Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (October 2015)
  65. Reshetnikov, A. N., 2003. The introduced fish, rotan (Perccottus glenii), depresses populations of aquatic animals (macroinvertebrates, amphibians, and a fish). Hydrobiologia 510: 83–90.CrossRefGoogle Scholar
  66. Reshetnikov, A. N., 2004. The fish Perccottus glenii: history of introduction to western regions of Eurasia. Hydrobiologia 522: 349–350.CrossRefGoogle Scholar
  67. Reshetnikov, A. N., 2008. Does rotan Perccottus glenii (Perciformes: Odontobutidae) eat the eggs of fish and amphibians? Journal of Ichthyology 48: 336–344.CrossRefGoogle Scholar
  68. Reshetnikov, A. N. & G. F. Ficetola, 2011. Potential range of the invasive fish rotan (Perccottus glenii) in the Holarctic. Biological Invasions 13: 2967–2980.CrossRefGoogle Scholar
  69. Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez & M. Müller, 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Roche, K. F., M. Janač & P. Jurajda, 2013. A review of Gobiid expansion along the Danube-Rhine corridor – geopolitical change as a driver for invasion. Knowledge and Management of Aquatic Ecosystems 411: 01.CrossRefGoogle Scholar
  71. Rosecchi, E., F. Thomas & A. J. Crivelli, 2001. Can life-history traits predict the fate of introduced species? A case study on two cyprinid fish in southern France. Freshwater Biology 46: 845–853.CrossRefGoogle Scholar
  72. Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erős, 2011. The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish 20: 251–262.CrossRefGoogle Scholar
  73. Simonović, P., S. Maric & V. Nikolić, 2006. Records Of Amur sleeper Perccottus glenii (Odontobutidae) in Serbia and its recent status. Archives of Biological Sciences Belgrade 58(1): 7–8.CrossRefGoogle Scholar
  74. Simonović, P., A. Tošić, M. Vassilev, A. Apostolou, D. Mrdak, M. Ristovska, V. Kostov, V. Nikolić, D. Škraba, L. Vilizzi & G. H. Copp, 2013. Risk assessment of non-native fishes in the Balkans Region using FISK, the invasiveness screening tool for non-native freshwater fishes. Mediterranean Marine Science 14: 369–376.Google Scholar
  75. Specziár, A., 2004. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary. Hydrobiologia 522: 249–260.CrossRefGoogle Scholar
  76. Specziár, A., 2010. A Balaton halfaunája: a halállomány összetétele, az egyes halfajok életkörülményei és a halállomány korszerő hasznosításának feltételrendszere. [Fish fauna of Lake Balaton: stock composition, living conditions of fish and directives of the modern utilization of the fish stock] Acta Biologica Debrecina Supplementum Oecologica Hungarica 23: 1–185. (in Hungarian)Google Scholar
  77. Specziár, A. & B. Turcsányi, 2014. Effect of stocking strategy on distribution and recapture rate of common carp Cyprinus carpio L., in a large and shallow temperate lake: implications for recreational put-and-take fisheries management. Journal of Applied Ichthyology 30: 887–894.CrossRefGoogle Scholar
  78. Szalay, M., 1954. Új halfaj Magyarországon – ezüstkárász. [New fish species in Hungary – Gible carp] Halászat 1 (3): 4. (in Hungarian)Google Scholar
  79. Takács, P., A. Specziár, T. Erős, P. Sály, P. Bíró, 2011. A balatoni vízgyűjtő halállományainak összetétele. [Fish assemblage stuctures of the Balaton-catchment] Ecology of Lake Balaton 1: 1–21. (in Hungarian with English summary)Google Scholar
  80. Takács, P., T. Erős, A. Specziár, P. Sály, Z. Vitál, Á. Ferincz, T. Molnár, Z. Szabolcsi, P. Bíró & E. Csoma, 2015. Population genetic patterns of threatened European mudminnow (Umbra krameri Walbaum, 1792) in a fragmented landscape: implications for conservation management. PLOS One 10(9): e0138640.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tarkan, A. S., G. F. Ekmekci, L. Vilizzi & G. H. Copp, 2014. Risk screening of non-native freshwater fishes at the frontier between Asia and Europe: first application in Turkey of the fish invasiveness screening kit. Journal of Applied Ichthyology 30: 392–398.CrossRefGoogle Scholar
  82. Terlecki, J. & R. Palka, 1999. Occurrence of Perccottus glenii Dybowski 1877 (Perciformes, Odontobutidae) in the middle stretch of the Vistula river Poland. Archives of Polish Fisheries 7: 141–150.Google Scholar
  83. Tóth, J., 1975. A brief account on the presence of the silver crucian carp (Carassius auratus gibelio Bloch 1873) in the Hungarian section of the Danube, Budapest. Annales Universitati Scientis Budapestiensis Section Biologica 18–19: 219–220.Google Scholar
  84. Venkatraman, E. S., 2000. A permutation test to compare receiver operating characteristic curves. Biometrics 56: 1134–1138.CrossRefPubMedGoogle Scholar
  85. Verreycken H., G. Van Thuyne & C. Belpaire, 2009. Nonindigenous freshwater fishes in Flanders: status, trends and risk assessment. PowerPoint presentation, Science Facing. 11 May 2009, Brussels. (Accessed 11 Nov 2015)
  86. Vilizzi, L. & G. H. Copp, 2012. Application of FISK, an invasiveness screening tool for non-native freshwater fishes, in the Murray-Darling Basin (Southeastern Australia). Risk Analysis 33: 1432–1440.CrossRefPubMedGoogle Scholar
  87. Vutskits, Gy., 1897. A Balaton halai és gyakoriságuk. [Abundaces of fish species in Lake Balaton] Természettudományi Közlöny 29: 593–595. (in Hungarian)Google Scholar
  88. Wheeler, A.C., N.R. Merrett & D.T.G. Quigley, 2004. Additional records and notes for Wheeler’s (1992) List of the common and scientific names of fishes of the British Isles. Journal of Fish Biology 65 (Supplement B): 1–40.Google Scholar
  89. Youden, W. J., 1950. Index for rating diagnostic tests. Cancer 3: 32–35.CrossRefPubMedGoogle Scholar
  90. Zlinszky, A. & G. Tímár, 2013. Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary. Hydrology and Earth System Sciences 17: 4589–4606.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Árpád Ferincz
    • 1
    Email author
  • Ádám Staszny
    • 1
  • András Weiperth
    • 2
  • Péter Takács
    • 3
  • Béla Urbányi
    • 1
  • Lorenzo Vilizzi
    • 4
  • Gábor Paulovits
    • 3
  • Gordon H. Copp
    • 5
    • 6
    • 7
  1. 1.Department of Aquaculture, Faculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary
  2. 2.Danube Research Institute, Centre for Ecological ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
  4. 4.Faculty of FisheriesMugla Sıtkı Koçman UniversityMuğlaTurkey
  5. 5.Centre for Environment, Fisheries & Aquaculture ScienceSuffolkUK
  6. 6.Department of Life and Environmental SciencesBournemouth UniversityPooleUK
  7. 7.Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughCanada

Personalised recommendations