Skip to main content
Log in

Genetic consequences of allopatric and sympatric divergence in Arctic charr (Salvelinus alpinus (L.)) from Fjellfrøsvatn as inferred by microsatellite markers

  • CHARR II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We contrast the genetic consequences of allopatric and sympatric divergence from the littoral spawning Arctic charr morph from Lake Fjellfrøsvatn. The littoral spawning Arctic charr has sympatrically diverged into a natural profundal adapted morph and via a recent (1930) translocation of about 40 adult Arctic charr established a new allopatric population in a nearby lake (Takvatn). The sympatric morph-pair in Fjellfrøsvatn was more genetically differentiated (F ST = 0.121), the derived profundal morph had higher genetic variation (H e  = 0.740 ± 0.220; N PAR = 4.87), and had a higher proportion of linkage disequilibrium among loci, than the Takvatn charr derived in allopatry (F ST = 0.066; H e  = 0.584 ± 0.193; N PAR = 0.29). The genetic differentiation in allopatry supports a scenario of rapid population expansion, despite genetic founder effects, whereas the genetic differentiation found in the sympatric morph-pair suggests that this divergence is older and supports a scenario of divergence under ongoing gene flow. We suggest that the differences between the two types of divergence may originate from temporal effects and differences in life histories between the two derived populations along with specific factors related to the initial stages of the divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf, F. W., P. A. Hohenlohe & G. Luikart, 2010. Genomics and the future of conservation genetics. Nature Reviews Genetics 11: 697–709.

    Article  CAS  PubMed  Google Scholar 

  • Amundsen, P.-A., A. Klemetsen & P. E. Grotnes, 1993. Rehabilitation of a stunted population of Arctic charr by intensive fishing. North American Journal of Fisheries Management 13: 483–491.

    Article  Google Scholar 

  • Amundsen, P.-A., R. Knudsen & A. Klemetsen, 2008. Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs. Environmental Biology of Fishes 83: 45–55.

    Article  Google Scholar 

  • Amundsen, P.-A., K. D. Lafferty, R. Knudsen, R. Primicerio, R. Kristoffersen, A. Klemetsen & A. M. Kuris, 2013. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia 171: 993–1002.

    Article  PubMed  Google Scholar 

  • Angers, B., L. Bernatchez, A. Angers & L. Desgroseillers, 1995. Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. Journal of Fish Biology 47: 177–185.

    Article  CAS  Google Scholar 

  • Bernatchez, L. & C. C. Wilson, 1998. Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology 7: 431–452.

    Article  Google Scholar 

  • Bhat, S., P.-A. Amundsen, R. Knudsen, K. Ø. Gjelland, S.-E. Fevolden, L. Bernatchez & K. Præbel, 2014. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. Plos One 9: e91208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornuet, J. M. & G. Luikart, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crane, P. A., C. J. Lewis, E. J. Kretschmer, S. J. Miller, W. J. Spearman, A. L. DeCicco, M. J. Lisac & J. K. Wenburg, 2004. Characterization and inheritance of seven microsatellite loci from Dolly Varden, Salvelinus malma, and cross-species amplification in Arctic char, S. alpinus. Conservation Genetics 5: 737–741.

    Article  Google Scholar 

  • Dehaan, P. W. & W. R. Ardren, 2005. Characterization of 20 highly variable tetranucleotide microsatellite loci for bull trout (Salvelinus confluentus) and cross-amplification in other Salvelinus species. Molecular Ecology Notes 5: 582–585.

    Article  CAS  Google Scholar 

  • Dierking, J., L. Phelps, K. Præbel, G. Ramm, E. Prigge, J. Borcherding, M. Brunke & C. Eizaguirre, 2014. Anthropogenic hybridization between endangered migratory and stationary whitefish taxa (Coregonus spp.) poses challenges for conservation. Evolutionary Applications 7: 1068–1083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dlugosch, K. M. & I. M. Parker, 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17: 431–449.

    Article  CAS  PubMed  Google Scholar 

  • Duchesne, P. & L. Bernatchez, 2002. An analytical investigation of the dynamics of inbreeding in multi-generation supportive breeding. Conservation Genetics 3: 47–60.

    Article  Google Scholar 

  • Etheridge, E. C., C. W. Bean, P. S. Maitland & C. E. Adams, 2010. Morphological and ecological responses to a conservation translocation of powan (Coregonus lavaretus) in Scotland. Aquatic Conservation-Marine and Freshwater Ecosystems 20: 274–281.

    Article  Google Scholar 

  • Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  PubMed  Google Scholar 

  • Gavrilets, S., 2003. Perspective: models of speciation: What have we learned in 40 years? Evolution 57: 2197–2215.

    Article  PubMed  Google Scholar 

  • Gomez-Uchida, D., K. P. Dunphy, M. F. O’Connell & D. E. Ruzzante, 2008. Genetic divergence between sympatric Arctic charr Salvelinus alpinus morphs in Gander Lake, Newfoundland: roles of migration, mutation and unequal effective population sizes. Journal of Fish Biology 73: 2040–2057.

    Article  Google Scholar 

  • Guo, S. W. & E. A. Thompson, 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Hagenlund, M., K. Østbye, K. Langdal, M. Hassve, R. Pettersen, E. Anderson, F. Gregersen & K. Præbel, 2015. Fauna crime: elucidating the potential source and introduction history of European smelt (Osmerus eperlanus L.) into Lake Storsjøen, Norway. Conservation Genetics 16: 1085–1098.

    Article  Google Scholar 

  • Hansson, B., D. Hasselquist, M. Tarka, P. Zehtindjiev & S. Bensch, 2008. Postglacial colonisation patterns and the role of isolation and expansion in driving diversification in a passerine bird. Plos One 3: e2794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendry, A. P., D. I. Bolnick, D. Berner & C. L. Peichel, 2009. Along the speciation continuum in sticklebacks. Journal of Fish Biology 75: 2000–2036.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt, G. M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.

    Article  Google Scholar 

  • Hubisz, M. J., D. Falush, M. Stephens & J. K. Pritchard, 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, L., 1980. The Arctic charr, Salvelinus alpinus. In Balon, E. K. (ed.), Charrs, Salmonid Fishes of the Genus Salvelinus. Perspectives in Vertebrate Science. W. Junk, Kluwer Boston, Hingham: 15–98.

    Google Scholar 

  • Kalinowski, S. T., 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189.

    Article  CAS  Google Scholar 

  • Klemetsen, A., 2010. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshwater Reviews 3: 49–74.

    Article  Google Scholar 

  • Klemetsen, A., P.-A. Amundsen, R. Knudsen & B. Hermansen, 1997. A profundal, winter spawning morph of Arctic charr Salvelinus alpinus (L.) in Fjellfrøsvatn, North Norway. Nordic Journal of Freshwater Research 73: 13–23.

    Google Scholar 

  • Klemetsen, A., P.-A. Amundsen, H. Muladal, S. Rubach & J. I. Solbakken, 1989. Habitat shifts in a dense, resident Arctic charr Salvelinus alpinus population. Physiology and Ecology Japan 1: 187–200.

    Google Scholar 

  • Klemetsen, A., J. M. Elliott, R. Knudsen & P. Sørensen, 2002. Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. Journal of Fish Biology 60: 933–950.

    Article  Google Scholar 

  • Klemetsen, A., R. Knudsen, R. Primicerio & P.-A. Amundsen, 2006. Divergent, genetically based feeding behaviour of two sympatric Arctic charr, Salvelinus alpinus (L.), morphs. Ecology of Freshwater Fish 15: 350–355.

    Article  Google Scholar 

  • Knudsen, R., A. Klemetsen, P.-A. Amundsen & B. Hermansen, 2006. Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proceedings of the Royal Society B-Biological Sciences 273: 2291–2298.

    Article  PubMed Central  Google Scholar 

  • Koskinen, M. T., T. O. Haugen & C. R. Primmer, 2002. Contemporary fisherian life-history evolution in small salmonid populations. Nature 419: 826–830.

    Article  CAS  PubMed  Google Scholar 

  • Lu, G., D. J. Basley & L. Bernatchez, 2001. Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish (Coregonus clupeaformis); relevance for speciation. Molecular Ecology 10: 965–985.

    Article  CAS  PubMed  Google Scholar 

  • Luikart, G. & J. M. Cornuet, 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology 12: 228–237.

    Article  Google Scholar 

  • McGowan, C. R., E. A. Davidson, R. A. Woram, R. G. Danzmann, M. M. Ferguson & W. S. Davidson, 2004. Ten polymorphic microsatellite markers from Arctic charr (Salvelinus alpinus): linkage analysis and amplification in other salmonids. Animal Genetics 35: 479–481.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M., T. Maruyama & R. Chakraborty, 1975. Bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Article  Google Scholar 

  • Nordborg, M. & S. Tavare, 2002. Linkage disequilibrium: what history has to tell us. Trends in Genetics 18: 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Olafsdottir, G. A., S. S. Snorrason & M. G. Ritchie, 2007. Postglacial intra-lacustrine divergence of Icelandic three spine stickleback morphs in three neovolcanic lakes. Journal of Evolutionary Biology 20: 1870–1881.

    Article  CAS  PubMed  Google Scholar 

  • Peakall, R. & P. E. Smouse, 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.

    Article  Google Scholar 

  • Persson, L., P.-A. Amundsen, A. M. De Roos, A. Klemetsen, R. Knudsen & R. Primicerio, 2007. Culling prey promotes predator recovery—alternative states in a whole-lake experiment. Science 316: 1743–1746.

    Article  CAS  PubMed  Google Scholar 

  • Piry, S., G. Luikart & J. M. Cornuet, 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90: 502–503.

    Article  Google Scholar 

  • Presa, P. & R. Guyomard, 1996. Conservation of microsatellites in three species of salmonids. Journal of Fish Biology 49: 1326–1329.

    Google Scholar 

  • Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Præbel, K., K. Ø. Gjelland, E. Salonen & P.-A. Amundsen, 2013a. Invasion genetics of vendace (Coregonus albula (L.)) in the Inari-Pasvik watercourse: revealing the origin and expansion pattern of a rapid colonization event. Ecology and Evolution 3: 1400–1412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Præbel, K., R. Knudsen, A. Siwertsson, M. Karhunen, K. K. Kahilainen, O. Ovaskainen, K. Østbye, S. Peruzzi, S.-E. Fevolden & P.-A. Amundsen, 2013b. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecology and Evolution 3: 4970–4986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rexroad, C. E., R. L. Coleman, A. M. Martin, W. K. Hershberger & J. Killefer, 2001. Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics 32: 317–319.

    Article  CAS  PubMed  Google Scholar 

  • Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  Google Scholar 

  • Rousset, F., 2007. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

    Article  Google Scholar 

  • Salminen, M., M. L. Koljonen, M. Saisa & J. Ruuhijarvi, 2012. Genetic effects of supportive stockings on native pikeperch populations in boreal lakes—three cases, three different outcomes. Hereditas 149: 1–15.

    Article  PubMed  Google Scholar 

  • Schluter, D., 2000a. Ecological character displacement in adaptive radiation. American Naturalist 156: S4–S16.

    Article  Google Scholar 

  • Schluter, D., 2000b. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323: 737–741.

    Article  CAS  PubMed  Google Scholar 

  • Skarstein, F., I. Folstad & H. P. Rønning, 2005. Spawning colouration, parasites and habitat selection in Salvelinus alpinus: initiating speciation by sexual selection? Journal of Fish Biology 67: 969–980.

    Article  Google Scholar 

  • Skulason, S. & T. B. Smith, 1995. Resource polymorphisms in vertebrates. Trends in Ecology & Evolution 10: 366–370.

    Article  CAS  Google Scholar 

  • Snorrason, S. S., S. Skulason, B. Jonsson, H. J. Malmquist, P. M. Jonasson, O. T. Sandlund & T. Lindem, 1994. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces, Salmonidae) –morphological divergence and ontogenic niche shifts. Biological Journal of the Linnean Society 52: 1–18.

    Article  Google Scholar 

  • Suarez, A. V. & N. D. Tsutsui, 2008. The evolutionary consequences of biological invasions. Molecular Ecology 17: 351–360.

    Article  PubMed  Google Scholar 

  • Szpiech, Z. A., M. Jakobsson & N. A. Rosenberg, 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachida, H., 2012. Linkage disequilibrium in a population undergoing periodic fragmentation and admixture. Genes & Genetic Systems 87: 125–135.

    Article  Google Scholar 

  • Tallmon, D. A., A. Koyuk, G. Luikart & M. A. Beaumont, 2008. ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources 8: 299–301.

    Article  PubMed  Google Scholar 

  • Van Houdt, J. K., B. Hellemans & F. A. M. Volckaert, 2003. Phylogenetic relationships among Palearctic and Nearctic burbot (Lota lota): Pleistocene extinctions and recolonization. Molecular Phylogenetics and Evolution 29: 599–612.

    Article  PubMed  Google Scholar 

  • Vonlanthen, P., D. Bittner, A. G. Hudson, K. A. Young, R. Muller, B. Lundsgaard-Hansen, D. Roy, S. Di Piazza, C. R. Largiader & O. Seehausen, 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Westgaard, J. I., A. Klemetsen & R. Knudsen, 2004. Genetic differences between two sympatric morphs of Arctic charr confirmed by microsatellite DNA. Journal of Fish Biology 65: 1185–1191.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank L. Dalsbø, A. P. Eloranta, M. Gabler, Ø. Haugland, J. Jacobsen, R. Kristoffersen, C. Lien, and A. Moe for assistance in the field and T. Hanebrekke for help in the laboratory. We also thank M. Jobling and four anonymous reviewers for insightful comments on earlier versions of the manuscript, improving the overall quality of the paper. The study was financed by the Norwegian Research Council (NFR “small projects”) and the Department of Arctic and Marine Biology, UiT The Arctic University of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Præbel.

Additional information

Guest editors: M. Power, R. Knudsen, C. Adams, M. J. Hansen, J. B. Dempson, M. Jobling & M. Ferguson / Advances in Charr Ecology and Evolution

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Præbel, K., Couton, M., Knudsen, R. et al. Genetic consequences of allopatric and sympatric divergence in Arctic charr (Salvelinus alpinus (L.)) from Fjellfrøsvatn as inferred by microsatellite markers. Hydrobiologia 783, 257–267 (2016). https://doi.org/10.1007/s10750-016-2648-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2648-3

Keywords

Navigation