Advertisement

Hydrobiologia

, Volume 783, Issue 1, pp 257–267 | Cite as

Genetic consequences of allopatric and sympatric divergence in Arctic charr (Salvelinus alpinus (L.)) from Fjellfrøsvatn as inferred by microsatellite markers

  • K. PræbelEmail author
  • M. Couton
  • R. Knudsen
  • P.-A. Amundsen
CHARR II

Abstract

We contrast the genetic consequences of allopatric and sympatric divergence from the littoral spawning Arctic charr morph from Lake Fjellfrøsvatn. The littoral spawning Arctic charr has sympatrically diverged into a natural profundal adapted morph and via a recent (1930) translocation of about 40 adult Arctic charr established a new allopatric population in a nearby lake (Takvatn). The sympatric morph-pair in Fjellfrøsvatn was more genetically differentiated (F ST = 0.121), the derived profundal morph had higher genetic variation (H e  = 0.740 ± 0.220; N PAR = 4.87), and had a higher proportion of linkage disequilibrium among loci, than the Takvatn charr derived in allopatry (F ST = 0.066; H e  = 0.584 ± 0.193; N PAR = 0.29). The genetic differentiation in allopatry supports a scenario of rapid population expansion, despite genetic founder effects, whereas the genetic differentiation found in the sympatric morph-pair suggests that this divergence is older and supports a scenario of divergence under ongoing gene flow. We suggest that the differences between the two types of divergence may originate from temporal effects and differences in life histories between the two derived populations along with specific factors related to the initial stages of the divergence.

Keywords

Founder effects Linkage disequilibrium Rapid divergence Sympatric morphs Translocation effects 

Notes

Acknowledgments

We thank L. Dalsbø, A. P. Eloranta, M. Gabler, Ø. Haugland, J. Jacobsen, R. Kristoffersen, C. Lien, and A. Moe for assistance in the field and T. Hanebrekke for help in the laboratory. We also thank M. Jobling and four anonymous reviewers for insightful comments on earlier versions of the manuscript, improving the overall quality of the paper. The study was financed by the Norwegian Research Council (NFR “small projects”) and the Department of Arctic and Marine Biology, UiT The Arctic University of Norway.

Supplementary material

10750_2016_2648_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)
10750_2016_2648_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)
10750_2016_2648_MOESM3_ESM.pdf (13 kb)
Supplementary material 3 (PDF 13 kb)

References

  1. Allendorf, F. W., P. A. Hohenlohe & G. Luikart, 2010. Genomics and the future of conservation genetics. Nature Reviews Genetics 11: 697–709.CrossRefPubMedGoogle Scholar
  2. Amundsen, P.-A., A. Klemetsen & P. E. Grotnes, 1993. Rehabilitation of a stunted population of Arctic charr by intensive fishing. North American Journal of Fisheries Management 13: 483–491.CrossRefGoogle Scholar
  3. Amundsen, P.-A., R. Knudsen & A. Klemetsen, 2008. Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs. Environmental Biology of Fishes 83: 45–55.CrossRefGoogle Scholar
  4. Amundsen, P.-A., K. D. Lafferty, R. Knudsen, R. Primicerio, R. Kristoffersen, A. Klemetsen & A. M. Kuris, 2013. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia 171: 993–1002.CrossRefPubMedGoogle Scholar
  5. Angers, B., L. Bernatchez, A. Angers & L. Desgroseillers, 1995. Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. Journal of Fish Biology 47: 177–185.CrossRefGoogle Scholar
  6. Bernatchez, L. & C. C. Wilson, 1998. Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology 7: 431–452.CrossRefGoogle Scholar
  7. Bhat, S., P.-A. Amundsen, R. Knudsen, K. Ø. Gjelland, S.-E. Fevolden, L. Bernatchez & K. Præbel, 2014. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. Plos One 9: e91208.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cornuet, J. M. & G. Luikart, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.PubMedPubMedCentralGoogle Scholar
  9. Crane, P. A., C. J. Lewis, E. J. Kretschmer, S. J. Miller, W. J. Spearman, A. L. DeCicco, M. J. Lisac & J. K. Wenburg, 2004. Characterization and inheritance of seven microsatellite loci from Dolly Varden, Salvelinus malma, and cross-species amplification in Arctic char, S. alpinus. Conservation Genetics 5: 737–741.CrossRefGoogle Scholar
  10. Dehaan, P. W. & W. R. Ardren, 2005. Characterization of 20 highly variable tetranucleotide microsatellite loci for bull trout (Salvelinus confluentus) and cross-amplification in other Salvelinus species. Molecular Ecology Notes 5: 582–585.CrossRefGoogle Scholar
  11. Dierking, J., L. Phelps, K. Præbel, G. Ramm, E. Prigge, J. Borcherding, M. Brunke & C. Eizaguirre, 2014. Anthropogenic hybridization between endangered migratory and stationary whitefish taxa (Coregonus spp.) poses challenges for conservation. Evolutionary Applications 7: 1068–1083.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dlugosch, K. M. & I. M. Parker, 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17: 431–449.CrossRefPubMedGoogle Scholar
  13. Duchesne, P. & L. Bernatchez, 2002. An analytical investigation of the dynamics of inbreeding in multi-generation supportive breeding. Conservation Genetics 3: 47–60.CrossRefGoogle Scholar
  14. Etheridge, E. C., C. W. Bean, P. S. Maitland & C. E. Adams, 2010. Morphological and ecological responses to a conservation translocation of powan (Coregonus lavaretus) in Scotland. Aquatic Conservation-Marine and Freshwater Ecosystems 20: 274–281.CrossRefGoogle Scholar
  15. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.CrossRefPubMedGoogle Scholar
  16. Gavrilets, S., 2003. Perspective: models of speciation: What have we learned in 40 years? Evolution 57: 2197–2215.CrossRefPubMedGoogle Scholar
  17. Gomez-Uchida, D., K. P. Dunphy, M. F. O’Connell & D. E. Ruzzante, 2008. Genetic divergence between sympatric Arctic charr Salvelinus alpinus morphs in Gander Lake, Newfoundland: roles of migration, mutation and unequal effective population sizes. Journal of Fish Biology 73: 2040–2057.CrossRefGoogle Scholar
  18. Guo, S. W. & E. A. Thompson, 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372.CrossRefPubMedGoogle Scholar
  19. Hagenlund, M., K. Østbye, K. Langdal, M. Hassve, R. Pettersen, E. Anderson, F. Gregersen & K. Præbel, 2015. Fauna crime: elucidating the potential source and introduction history of European smelt (Osmerus eperlanus L.) into Lake Storsjøen, Norway. Conservation Genetics 16: 1085–1098.CrossRefGoogle Scholar
  20. Hansson, B., D. Hasselquist, M. Tarka, P. Zehtindjiev & S. Bensch, 2008. Postglacial colonisation patterns and the role of isolation and expansion in driving diversification in a passerine bird. Plos One 3: e2794.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hendry, A. P., D. I. Bolnick, D. Berner & C. L. Peichel, 2009. Along the speciation continuum in sticklebacks. Journal of Fish Biology 75: 2000–2036.CrossRefPubMedGoogle Scholar
  22. Hewitt, G. M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.CrossRefGoogle Scholar
  23. Hubisz, M. J., D. Falush, M. Stephens & J. K. Pritchard, 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Johnson, L., 1980. The Arctic charr, Salvelinus alpinus. In Balon, E. K. (ed.), Charrs, Salmonid Fishes of the Genus Salvelinus. Perspectives in Vertebrate Science. W. Junk, Kluwer Boston, Hingham: 15–98.Google Scholar
  25. Kalinowski, S. T., 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189.CrossRefGoogle Scholar
  26. Klemetsen, A., 2010. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshwater Reviews 3: 49–74.CrossRefGoogle Scholar
  27. Klemetsen, A., P.-A. Amundsen, R. Knudsen & B. Hermansen, 1997. A profundal, winter spawning morph of Arctic charr Salvelinus alpinus (L.) in Fjellfrøsvatn, North Norway. Nordic Journal of Freshwater Research 73: 13–23.Google Scholar
  28. Klemetsen, A., P.-A. Amundsen, H. Muladal, S. Rubach & J. I. Solbakken, 1989. Habitat shifts in a dense, resident Arctic charr Salvelinus alpinus population. Physiology and Ecology Japan 1: 187–200.Google Scholar
  29. Klemetsen, A., J. M. Elliott, R. Knudsen & P. Sørensen, 2002. Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. Journal of Fish Biology 60: 933–950.CrossRefGoogle Scholar
  30. Klemetsen, A., R. Knudsen, R. Primicerio & P.-A. Amundsen, 2006. Divergent, genetically based feeding behaviour of two sympatric Arctic charr, Salvelinus alpinus (L.), morphs. Ecology of Freshwater Fish 15: 350–355.CrossRefGoogle Scholar
  31. Knudsen, R., A. Klemetsen, P.-A. Amundsen & B. Hermansen, 2006. Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proceedings of the Royal Society B-Biological Sciences 273: 2291–2298.CrossRefPubMedCentralGoogle Scholar
  32. Koskinen, M. T., T. O. Haugen & C. R. Primmer, 2002. Contemporary fisherian life-history evolution in small salmonid populations. Nature 419: 826–830.CrossRefPubMedGoogle Scholar
  33. Lu, G., D. J. Basley & L. Bernatchez, 2001. Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish (Coregonus clupeaformis); relevance for speciation. Molecular Ecology 10: 965–985.CrossRefPubMedGoogle Scholar
  34. Luikart, G. & J. M. Cornuet, 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology 12: 228–237.CrossRefGoogle Scholar
  35. McGowan, C. R., E. A. Davidson, R. A. Woram, R. G. Danzmann, M. M. Ferguson & W. S. Davidson, 2004. Ten polymorphic microsatellite markers from Arctic charr (Salvelinus alpinus): linkage analysis and amplification in other salmonids. Animal Genetics 35: 479–481.CrossRefPubMedGoogle Scholar
  36. Nei, M., T. Maruyama & R. Chakraborty, 1975. Bottleneck effect and genetic variability in populations. Evolution 29: 1–10.CrossRefGoogle Scholar
  37. Nordborg, M. & S. Tavare, 2002. Linkage disequilibrium: what history has to tell us. Trends in Genetics 18: 83–90.CrossRefPubMedGoogle Scholar
  38. Olafsdottir, G. A., S. S. Snorrason & M. G. Ritchie, 2007. Postglacial intra-lacustrine divergence of Icelandic three spine stickleback morphs in three neovolcanic lakes. Journal of Evolutionary Biology 20: 1870–1881.CrossRefPubMedGoogle Scholar
  39. Peakall, R. & P. E. Smouse, 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.CrossRefGoogle Scholar
  40. Persson, L., P.-A. Amundsen, A. M. De Roos, A. Klemetsen, R. Knudsen & R. Primicerio, 2007. Culling prey promotes predator recovery—alternative states in a whole-lake experiment. Science 316: 1743–1746.CrossRefPubMedGoogle Scholar
  41. Piry, S., G. Luikart & J. M. Cornuet, 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90: 502–503.CrossRefGoogle Scholar
  42. Presa, P. & R. Guyomard, 1996. Conservation of microsatellites in three species of salmonids. Journal of Fish Biology 49: 1326–1329.Google Scholar
  43. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  44. Præbel, K., K. Ø. Gjelland, E. Salonen & P.-A. Amundsen, 2013a. Invasion genetics of vendace (Coregonus albula (L.)) in the Inari-Pasvik watercourse: revealing the origin and expansion pattern of a rapid colonization event. Ecology and Evolution 3: 1400–1412.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Præbel, K., R. Knudsen, A. Siwertsson, M. Karhunen, K. K. Kahilainen, O. Ovaskainen, K. Østbye, S. Peruzzi, S.-E. Fevolden & P.-A. Amundsen, 2013b. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecology and Evolution 3: 4970–4986.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rexroad, C. E., R. L. Coleman, A. M. Martin, W. K. Hershberger & J. Killefer, 2001. Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics 32: 317–319.CrossRefPubMedGoogle Scholar
  47. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  48. Rousset, F., 2007. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.CrossRefGoogle Scholar
  49. Salminen, M., M. L. Koljonen, M. Saisa & J. Ruuhijarvi, 2012. Genetic effects of supportive stockings on native pikeperch populations in boreal lakes—three cases, three different outcomes. Hereditas 149: 1–15.CrossRefPubMedGoogle Scholar
  50. Schluter, D., 2000a. Ecological character displacement in adaptive radiation. American Naturalist 156: S4–S16.CrossRefGoogle Scholar
  51. Schluter, D., 2000b. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.Google Scholar
  52. Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323: 737–741.CrossRefPubMedGoogle Scholar
  53. Skarstein, F., I. Folstad & H. P. Rønning, 2005. Spawning colouration, parasites and habitat selection in Salvelinus alpinus: initiating speciation by sexual selection? Journal of Fish Biology 67: 969–980.CrossRefGoogle Scholar
  54. Skulason, S. & T. B. Smith, 1995. Resource polymorphisms in vertebrates. Trends in Ecology & Evolution 10: 366–370.CrossRefGoogle Scholar
  55. Snorrason, S. S., S. Skulason, B. Jonsson, H. J. Malmquist, P. M. Jonasson, O. T. Sandlund & T. Lindem, 1994. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces, Salmonidae) –morphological divergence and ontogenic niche shifts. Biological Journal of the Linnean Society 52: 1–18.CrossRefGoogle Scholar
  56. Suarez, A. V. & N. D. Tsutsui, 2008. The evolutionary consequences of biological invasions. Molecular Ecology 17: 351–360.CrossRefPubMedGoogle Scholar
  57. Szpiech, Z. A., M. Jakobsson & N. A. Rosenberg, 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tachida, H., 2012. Linkage disequilibrium in a population undergoing periodic fragmentation and admixture. Genes & Genetic Systems 87: 125–135.CrossRefGoogle Scholar
  59. Tallmon, D. A., A. Koyuk, G. Luikart & M. A. Beaumont, 2008. ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources 8: 299–301.CrossRefPubMedGoogle Scholar
  60. Van Houdt, J. K., B. Hellemans & F. A. M. Volckaert, 2003. Phylogenetic relationships among Palearctic and Nearctic burbot (Lota lota): Pleistocene extinctions and recolonization. Molecular Phylogenetics and Evolution 29: 599–612.CrossRefPubMedGoogle Scholar
  61. Vonlanthen, P., D. Bittner, A. G. Hudson, K. A. Young, R. Muller, B. Lundsgaard-Hansen, D. Roy, S. Di Piazza, C. R. Largiader & O. Seehausen, 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–363.CrossRefPubMedGoogle Scholar
  62. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar
  63. Westgaard, J. I., A. Klemetsen & R. Knudsen, 2004. Genetic differences between two sympatric morphs of Arctic charr confirmed by microsatellite DNA. Journal of Fish Biology 65: 1185–1191.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • K. Præbel
    • 1
    Email author
  • M. Couton
    • 1
  • R. Knudsen
    • 1
  • P.-A. Amundsen
    • 1
  1. 1.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT–the Arctic University of NorwayTromsøNorway

Personalised recommendations