Skip to main content
Log in

Clonal structure and depth selection during a Caullerya mesnili epidemic in a hybridizing population of the Daphnia longispina complex

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia perform diel vertical migration (DVM), a predator-avoidance strategy to migrate towards deeper and colder layers in the water column in the morning and movement to the algae-rich surface layers in the evening. However, individuals performing DVM incur several trade-offs since they might suffer from resource limitation and a slower instantaneous birth rate in deeper depths. DVM patterns may be modified by abiotic factors such as temperature, food concentration, or pH and vary among different Daphnia species and genotypes. Furthermore, Daphnia host a variety of microparasites that might pose an additional factor influencing DVM behaviour. For infected individuals, migration into cooler temperature layers might slow down parasite growth. Moreover, parasites can increase opacity of their hosts. Non-migrating individuals might then be selectively purged from the upper layers by visually hunting predators. With these premises we asked, whether epidemics of the ichthyosporean parasite Caullerya mesnili affect or are affected by the DVM behaviour of Daphnia in Lake Greifensee, Switzerland by analysing the vertical distribution of Daphnia during day and night on two dates. Furthermore, we were interested whether a potential interaction depends on host genotype. We therefore studied the genotypic composition of the integrated population in regular sampling intervals over the course of one year and on a fine-grained vertical resolution during the Caullerya epidemic in late summer. Since Caullerya-infected Daphnia migrated equally well as uninfected ones, the findings of this study suggest that Caullerya epidemics neither affected nor were affected by the DVM behaviour of Daphnia. We observed clonal succession in the lake but could not link this succession to the Caullerya epidemic; all except one of the common multilocus genotypes were under-infected. In addition, outbreak and course of this Caullerya epidemic seemed to rely mainly on environmental cues. Because this first study only provides a snapshot of time, we hope that further studies will be done to verify our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberto, F., 2013. MsatAllele: Visualizes the scoring and binning of microsatellite fragment sizes. vol R package version 1.05.

  • Bittner, K., K.-O. Rothhaupt & D. Ebert, 2002. Ecological interactions of the microparasite Caullerya mesnili and its host Daphnia galeata. Limnology and Oceanography 47: 300–305.

    Article  Google Scholar 

  • Boehrer, B. & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46: 27.

    Article  Google Scholar 

  • Brede, N., A. Thielsch, C. Sandrock, P. Spaak, B. Keller, B. Streit & K. Schwenk, 2006. Microsatellite markers for European Daphnia. Molecular Ecology Notes 6: 536–539.

    Article  CAS  Google Scholar 

  • Brownstein, M. J., J. D. Carpten & J. R. Smith, 1996. Modulation of non-templated nucleotide addition by taq DNA polymerase: Primer modifications that facilitate genotyping. Biotechniques 20: 1004–1006.

    CAS  PubMed  Google Scholar 

  • Brzeziński, T. & E. von Elert, 2007. Biochemical food quality effects on a Daphnia hybrid complex. Limnology and Oceanography 52: 2350–2357.

    Article  Google Scholar 

  • Bürgi, H. R., 1983. Eine neue Netzgarnitur mit Kipp-Schliessmechanismus für quantitative Zooplanktonfänge in Seen. Schweizerische Zeitschrift für Hydrologie 45: 505–507.

    Google Scholar 

  • Bürgi, H. R., P. Weber & H. Bachman, 1985. Seasonal variations in the trophic structure of phyto- and zooplankton communities in lakes in different trophic states. Schweizerische Zeitschrift für Hydrologie 47: 197–224.

    Article  Google Scholar 

  • Cáceres, C. E., S. R. Hall, M. A. Duffy, A. J. Tessier, C. Helmle & S. MacIntyre, 2006. Physical structure of lakes constrains epidemics in Daphnia populations. Ecology 87: 1438–1444.

    Article  PubMed  Google Scholar 

  • Carvalho, G. R. & D. J. Crisp, 1987. The clonal ecology of Daphnia magna (Crustacea, Cladocera): temporal changes in the clonal structure of a natural-population. Journal of Animal Ecology 56: 453–468.

    Article  Google Scholar 

  • Chatton, E., 1907. Caullerya mesnili n. g. n. sp. a Haplosporidie parasite des Daphnies. Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales 62: 529–531.

    Google Scholar 

  • Chesson, P. & N. Huntly, 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. American Naturalist 150: 519–553.

    Article  CAS  PubMed  Google Scholar 

  • De Meester, L., 1993. The vertical distribution of Daphnia magna genotypes selected for different phototactic behaviour: outdoor experiments. Archiv für Hydrobiololgie Beiheft Ergebnisse der Limnologie 39: 137–155.

    Google Scholar 

  • De Meester, L. & H. J. Dumont, 1989. Phototaxis in Daphnia - Interaction of hunger and genotype. Limnology and Oceanography 34: 1322–1325.

    Article  Google Scholar 

  • De Meester, L., L. J. Weider & R. Tollrian, 1995. Alternative anti-predator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378: 483–485.

    Article  Google Scholar 

  • Decaestecker, E., L. De Meester & D. Ebert, 2002. In deep trouble: habitat selection constrained by multiple enemies in zooplankton. Proceedings of the National Academy of Sciences 99: 5481–5485.

    Article  CAS  Google Scholar 

  • Dobson, A. & M. Crawley, 1994. Pathogens and the structure of plant communities. Trends in Ecology & Evolution 9: 393–398.

    Article  CAS  Google Scholar 

  • Duffy, M. A., S. R. Hall, C. E. Caceres & A. R. Ives, 2009. Rapid evolution, seasonality, and the termination of parasite epidemics. Ecology 90: 1441–1448.

    Article  PubMed  Google Scholar 

  • Duffy, M. A., J. H. Ochs, R. M. Penczykowski, D. J. Civitello, C. A. Klausmeier & S. R. Hall, 2012. Ecological context influences epidemic size and parasite-driven evolution. Science 335: 1636–1638.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, A., C. Guisande & W. Lampert, 1993. Further trade offs in Daphnia vertical migration strategies. Archiv für Hydrobiololgie Beiheft Ergebnisse der Limnologie 39: 99–108.

    Google Scholar 

  • Ebert, D., 2005. Ecology, epidemiology, and evolution of parasitism in Daphnia [Internet]. In: Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books.

  • Freeland, W. J., 1983. Parasites and the coexistence of animal host species. American Naturalist 121: 223–236.

    Article  Google Scholar 

  • Gandon, S., 2002. Local adaptation and the geometry of host–parasite coevolution. Ecology Letters 5: 246–256.

    Article  Google Scholar 

  • Gandon, S., D. Ebert, I. Olivieri & Y. Michalakis, 1998. Differential Adaptation in Spacially Heterogeneous Environments and Host-Parasite Coevolution. In Mopper, S. & S. Strauss (eds), Genetic Structure and Local Adaptation in Natural Insect Populations. Springer, US: 325–342.

    Chapter  Google Scholar 

  • Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97: 16–35.

    Article  Google Scholar 

  • Green, J., 1974. Parasites and epibionts of cladocera. Transactions of the Zoological Society of London 32: 417–515.

    Article  Google Scholar 

  • Hudson, P. J., A. P. Dobson & D. Newborn, 1998. Prevention of population cycles by parasite removal. Science 282: 2256–2258.

    Article  CAS  PubMed  Google Scholar 

  • Huntley, M. & E. R. Brooks, 1982. Effects of age and food availability on diel vertical migration of Calanus pacificus. Marine Biology 71: 23–31.

    Article  Google Scholar 

  • Jombart, T., 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405.

    Article  CAS  PubMed  Google Scholar 

  • Lampert, W., 2011. Daphnia: development of a model organism in ecology and evolution, Vol. 21. International Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Lampert, W., E. McCauley & B. F. J. Manly, 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proceedings of the Royal Society of London Series B-Biological Sciences 270: 765–773.

    Article  Google Scholar 

  • Lange, B., M. Reuter, D. Ebert, K. Muylaert & E. Decaestecker, 2014. Diet quality determines interspecific parasite interactions in host populations. Ecology and Evolution 4: 3093–3102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lass, S. & K. Bittner, 2002. Facing multiple enemies: parasitised hosts respond to predator kairomones. Oecologia 132: 344–349.

    Article  PubMed  Google Scholar 

  • Liow, L. H., L. Van Valen & N. C. Stenseth, 2011. Red Queen: from populations to taxa and communities. Trends in Ecology & Evolution 26: 349–358.

    Article  Google Scholar 

  • Lohr, J. N., C. Laforsch, H. Koerner & J. Wolinska, 2010. A Daphnia parasite (Caullerya mesnili) constitutes a new member of the Ichthyosporea, a group of protists near the animal-fungi divergence. Journal of Eukaryotic Microbiology 57: 328–336.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, S. E., A. F. Read & T. J. Little, 2004. The effect of a pathogen epidemic on the genetic structure and reproductive strategy of the crustacean Daphnia magna. Ecology Letters 7: 848–858.

    Article  Google Scholar 

  • Möst, M. H., 2013. Environmental change and its impact on hybridising Daphnia species complexes. PhD thesis, ETH-Zürich/Eawag.

  • Park, T., 1948. Interspecies competition in populations of Trilobium confusum Duval and Trilobium castaneum Herbst. Ecological Monographs 18: 265–307.

    Article  Google Scholar 

  • Core Team, R., 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ringelberg, J., 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews of the Cambridge Philosophical Society 74: 397–423.

    Article  Google Scholar 

  • Ringelberg, J., 2010. Diel vertical migration of zooplankton in lakes and oceans: causal explanations and adaptive significances. Springer, Netherlands.

    Book  Google Scholar 

  • Schoebel, C. N., C. Tellenbach, P. Spaak & J. Wolinska, 2011. Temperature effects on parasite prevalence in a natural hybrid complex. Biology Letters 7: 108–111.

    Article  PubMed  Google Scholar 

  • Schwenk, K. & P. Spaak, 1995. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51: 465–481.

    Article  CAS  Google Scholar 

  • Sommer, U., 1984. The paradox of the plankton - fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography 29: 633–636.

    Article  Google Scholar 

  • Spaak, P. & J. Ringelberg, 1997. Differential behaviour and shifts in genotype composition during the beginning of a seasonal period of diel vertical migration. Hydrobiologia 360: 177–185.

    Article  Google Scholar 

  • Spaak, P. & M. Boersma, 2006. Predator mediated coexistence of hybrid and parental Daphnia taxa. Archiv für Hydrobiologie 167: 55–76.

    Article  Google Scholar 

  • Spaak, P., L. Eggenschwiler & H. Bürgi, 2001. Genetic variation and clonal differentiation in the Daphnia population of the Greifensee, a pre-alpine Swiss lake. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 27: 1919–1923.

    Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Tellenbach, C., J. Wolinska & P. Spaak, 2007. Epidemiology of a Daphnia brood parasite and its implications on host life-history traits. Oecologia 154: 369–375.

    Article  PubMed  Google Scholar 

  • Toonen, R. & S. Hughes, 2001. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31: 1320–1324.

    CAS  PubMed  Google Scholar 

  • Truett, G. E., P. Heeger, R. L. Mynatt, A. A. Truett, J. A. Walker & M. L. Warman, 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52–54.

    CAS  PubMed  Google Scholar 

  • Van Uytvanck, J. & L. De Meester, 1990. Phototaxis in Daphnia magna - the influence of temperature and acidity on the phototactic behavior of Daphnia genotypes. Journal of Plankton Research 12: 1089–1097.

    Article  Google Scholar 

  • van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  • Weider, L. & W. Lampert, 1985. Differential response of Daphnia genotypes to oxygen stress: respiration rates, hemoglobin content and low-oxygen tolerance. Oecologia 65: 487–491.

    Article  PubMed  Google Scholar 

  • Weider, L. J., W. Makino, K. Acharya, K. L. Glenn, M. Kyle, J. Urabe & J. J. Elser, 2005. Genotype x environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143: 537–547.

    Article  PubMed  Google Scholar 

  • Wetzel, R. G., 2001. Limnology lake and river ecosystems, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • Winder, M. & P. Spaak, 2001. Carbon as an indicator of Daphnia condition in an alpine lake. Hydrobiologia 442: 269–278.

    Article  Google Scholar 

  • Wolinska, J. & K. C. King, 2009. Environment can alter selection in host–parasite interactions. Trends in Parasitology 25: 236–244.

    Article  PubMed  Google Scholar 

  • Wolinska, J. & P. Spaak, 2009. The cost of being common: evidence from natural Daphnia populations. Evolution 63: 1893–1901.

    Article  PubMed  Google Scholar 

  • Wolinska, J., C. M. Lively & P. Spaak, 2008. Parasites in hybridizing communities: the Red Queen again? Trends in Parasitology 24: 121–126.

    Article  PubMed  Google Scholar 

  • Wolinska, J., B. Keller, K. Bittner, S. Lass & P. Spaak, 2004. Do parasites lower Daphnia hybrid fitness? Limnology and Oceanography 49: 1401–1407.

    Article  Google Scholar 

  • Wolinska, J., K. Bittner, D. Ebert & P. Spaak, 2006. The coexistence of hybrid and parental Daphnia: the role of parasites. Proceedings of the Royal Society of London B: Biological Sciences 273: 1977–1983.

    Article  Google Scholar 

  • Wolinska, J., B. Keller, M. Manca & P. Spaak, 2007. Parasite survey of a Daphnia hybrid complex: host-specificity and environment determine infection. Journal of Animal Ecology 76: 191–200.

    Article  PubMed  Google Scholar 

  • Wolinska, J., J. Seda, H. Koerner, P. Smilauer & A. Petrusek, 2011. Spatial variation of Daphnia parasite load within individual water bodies. Journal of Plankton Research 33: 1284–1294.

    Article  Google Scholar 

  • Yin, M., A. Petrusek, J. Seda & J. Wolinska, 2012. Fine-scale genetic analysis of Daphnia host populations infected by two virulent parasites – strong fluctuations in clonal structure at small temporal and spatial scales. International Journal for Parasitology 42: 115–121.

    Article  PubMed  Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography 21: 804–813.

    Article  Google Scholar 

  • Zuur, A. F., 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank Esther Keller for her support in the laboratory. We also thank Adam Petrusek and two anonymous reviewers for their high quality and detailed review report. This study was funded by grants from the Swiss Science Foundation (310030L_135750) to PS and by the Swiss Enlargement Contribution, Project IZERZ0–142165, “CyanoArchive”, in the framework of the Romanian-Swiss Research Program. CT was supported by an SNF Early Postdoc.Mobility fellowship P2EZP3_148740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Spaak.

Additional information

Guest editors: Adam Petrusek & Piet Spaak / Proceedings of the 10th International Symposium on Cladocera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11693 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tardent, N., Tellenbach, C., Turko, P. et al. Clonal structure and depth selection during a Caullerya mesnili epidemic in a hybridizing population of the Daphnia longispina complex. Hydrobiologia 798, 33–44 (2017). https://doi.org/10.1007/s10750-015-2632-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2632-3

Keywords

Navigation