, Volume 771, Issue 1, pp 31–44 | Cite as

Fish assemblage and diversity in lakes of western and central Turkey: role of geo-climatic and other environmental variables

  • Thomas BollEmail author
  • Eti E. Levi
  • Gizem Bezirci
  • Müfit Özuluğ
  • Ülkü Nihan Tavşanoğlu
  • Ayşe İdil Çakıroğlu
  • Seval Özcan
  • Sandra Brucet
  • Erik Jeppesen
  • Meryem BeklioğluEmail author
Primary Research Paper


We conducted a fish survey in 40 lakes in western and central Turkey. Fifty species (one to eleven per lake) were recorded, including eighteen endemic and seven alien species. We investigated which local geo-climatic and other environmental variables shaped the fish assemblages. Altitude and temperature turned out to be the most important factors for total species richness as well as richness of omnivorous and zooplanktivorous species and the Shannon–Wiener diversity index, with more species and higher diversity occurring in the warmer lowland lakes. Altitude may affect the fish assemblage directly through dispersal limitation or indirectly by creating a gradient in temperature with which it was strongly correlated. Cyprinidae was the most species-rich and widespread family. Atherinidae, Gobiidae, and Mugilidae (families of marine origin) were mainly found in the lowland regions, while Salmonidae exclusively appeared in the high-altitude lakes. The presence of widely distributed translocated native and alien species revealed a large human impact on the fish assemblages, potentially threatening the rich endemic fish fauna in lakes in this region.


Altitude Alien species Endemic species Feeding functional groups Temperature Total phosphorus 



This study was supported by TÜBİTAK- ÇAYDAG (Projects Numbers: 105Y332 and 110Y125), the Middle East Technical University (METU)-BAP program of Turkey (BAP.07.02.2007-2012), FP-7 REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121), and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 ( TB was supported by TÜBİTAK program 2216—Research Fellowship Program for Foreign Citizens (Ref: B.14.2.TBT. EEL, GB, UNT, and AİÇ were also supported by TÜBİTAK (Project Nos.: 105Y332 and 110Y125). SB’s contribution was supported by the TÜBITAK 2221—Visiting Scientist Fellowship Program and by the Marie Curie Intra European Fellowship no. 330249 (CLIMBING). EJ was further supported by CIRCE, CRES, and CLEAR. We are pleased to thank Gülşah Saç, Çiğdem Kaptan, Gürçay Kıvanç Akyıldız, and Ümmühan Aslan for assistance in the field and Anne Mette Poulsen for valuable editing of the manuscript. We also thank three anonymous reviewers for most valuable comments that helped shaping this paper.


  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, L. J. S. Melanie, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403.CrossRefGoogle Scholar
  2. Amarasinghe, U. S. & R. L. Welcomme, 2002. An analysis of fish species richness in natural lakes. Environmental Biology of Fishes 65: 327–339.CrossRefGoogle Scholar
  3. Aydin, H., Ö. Gaygusuz, A. S. Tarkan, N. Top, Ö. Emiroğlu & Ç. Gürsoy Gaygusuz, 2011. Invasion of freshwater bodies in the Marmara region (northwestern Turkey) by nonnative gibel carp, Carassius gibelio (Bloch, 1782). Turkish Journal of Zoology 35: 829–836.Google Scholar
  4. Balik, S., 1995. Freshwater fish in Anatolia, Turkey. Biological Conservation 72: 213–223.CrossRefGoogle Scholar
  5. Barbour, C. D. & J. H. Brown, 1974. Fish species diversity in lakes. The American Naturalist 108: 473–489.CrossRefGoogle Scholar
  6. Barton, K., 2015. MuMIn: multi-model inference. R package version 1.13.4.
  7. Bogutskaya, N. G., F. Küçük & M. A. Atalay, 2007. A description of three new species of the genus Pseudophoxinus from Turkey (Teleostei: Cyprinidae: Leuciscinae). Zoosystematica Rossica 15: 335–341.Google Scholar
  8. Brucet, S., S. Pédron, T. Mehner, T. L. Lauridsen, C. Argillier, I. J. Winfield, P. Volta, M. Emmrich, T. Hesthagen, K. Holmgren, L. Benejam, F. Kelly, T. Krause, A. Palm, M. Rask & E. Jeppesen, 2013. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshwater Biology 58: 1779–1793.CrossRefGoogle Scholar
  9. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  10. Çakıroğlu, Aİ., Ü. Nihan Tavşanoğlu, E. E. Levi, T. A. Davidson, T. Bucak, A. Özen, G. K. Akyıldız, E. Jeppesen & M. Beklioğlu, 2014. Relatedness between contemporary and subfossil cladoceran assemblages in Turkish lakes. Journal of Paleolimnology 52: 367–383.CrossRefGoogle Scholar
  11. Canfield, D. E., J. V. Shireman, D. E. Colle, W. T. Hailer, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497–507.CrossRefGoogle Scholar
  12. Carl, H. & P. R. Møller (eds.), 2012. Atlas Over Danske Ferskvandsfisk (in Danish, Atlas of Danish Freshwater Fish). Natural History Museum of Denmark, Copenhagen.Google Scholar
  13. CEN, 2005. Water quality — sampling of fish with multi-mesh gill nets. European Committee for Standardization. Ref. No. EN 14757:2005.Google Scholar
  14. Crivelli, A. J., 1995. Are fish introductions a threat to endemic freshwater fishes in the northern Mediterranean region? Biological Conservation 72: 311–319.CrossRefGoogle Scholar
  15. Cussac, V. E., D. A. Fernández, S. E. Gómez & H. L. López, 2009. Fishes of southern South America: a story driven by temperature. Fish Physiology and Biochemistry 35: 29–42.CrossRefPubMedGoogle Scholar
  16. Drakou, E. G., D. C. Bobori, A. S. Kallimanis, A. D. Mazaris, S. P. Sgardelis & J. D. Pantis, 2009. Freshwater fish community structured more by dispersal limitation than by environmental heterogeneity. Ecology of Freshwater Fish 18: 369–379.CrossRefGoogle Scholar
  17. Ekmekçi, F. G. & G. Ş. Kirankaya, 2006. Distribution of an invasive fish species, Pseudorasbora parva (Temminck & Schlegel, 1846) in Turkey. Turkish Journal of Zoology 30: 329–334.Google Scholar
  18. Erk’akan, f, F. G. Atalay-Ekmekçi & T. T. Nalbant, 1999. A review of the genus Cobitis in Turkey (Pisces: Ostariophysi: Cobitidae). Hydrobiologia 403: 13–26.CrossRefGoogle Scholar
  19. Fischer, J. R., R. M. Krogman & M. C. Quist, 2013. Influences of native and non-native benthivorous fishes on aquatic ecosystem degradation. Hydrobiologia 711: 187–199.CrossRefGoogle Scholar
  20. Freyhof, J. & M. Özuluğ, 2009a. Pseudophoxinus fahrettini, a new species of spring minnow from Central Anatolia (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 20: 325–332.Google Scholar
  21. Freyhof, J. & M. Özuluğ, 2009b. Pseudophoxinus evliyae, a new species of spring minnow from Western Anatolia with remarks on the distribution of P. ninae and the systematic position of P. fahirae (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 20: 309–318.Google Scholar
  22. Freyhof, J. & M. Özuluğ, 2010. Pseudophoxinus hittitorum, a new species of spring minnow from Central Anatolia (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 21: 239–245.Google Scholar
  23. Fricke, R., M. Bilecenoğlu & H. M. Sarı, 2007. Annotated checklist of fish and lamprey species (Gnathostomata and Petromyzontomorphi) of Turkey, including red list of threatened and declining species. Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) 706: 1–169.Google Scholar
  24. Froese, R., & D. Pauly (eds), 2013. FishBase.World Wide Web electronic publication, version (10/2013).
  25. González-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.CrossRefGoogle Scholar
  26. Gozlan, R. E., J. R. Britton, I. Cowx & G. H. Copp, 2010. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 76: 751–786.CrossRefGoogle Scholar
  27. Griffiths, D., 2006. Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology 75: 734–751.CrossRefPubMedGoogle Scholar
  28. Harlioğlu, A. G., 2011. Present status of fisheries in Turkey. Reviews in Fish Biology and Fisheries 21: 667–680.CrossRefGoogle Scholar
  29. Heinzl, H. & M. Mittlböck, 2003. Pseudo R-squared measures for Poisson regression models with over- or underdispersion. Computational Statistics and Data Analysis 44: 253–271.CrossRefGoogle Scholar
  30. Hesthagen, T. & O. T. Sandlund, 2004. Fish distribution in a mountain area in south-eastern Norway: human introductions overrule natural immigration. Hydrobiologia 521: 49–59.CrossRefGoogle Scholar
  31. Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. The American Naturalist 163: 192–211.CrossRefPubMedGoogle Scholar
  32. Innal, D., 2012. Alien fish species in reservoir systems in Turkey: a review. Management of Biological Invasions 3: 115–119.CrossRefGoogle Scholar
  33. Innal, D. & F. Erk’akan, 2006. Effects of exotic and translocated fish species in the inland waters of Turkey. Reviews in Fish Biology and Fisheries 16: 39–50.CrossRefGoogle Scholar
  34. Iyigun, C., M. Türkeş, İ. Batmaz, C. Yozgatligil, V. Purutçuoğlu, E. K. Koç & M. Z. Öztürk, 2013. Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology 114: 95–106.CrossRefGoogle Scholar
  35. Jeppesen, E., J. P. Jensen, M. Søndergaard & T. L. Lauridsen, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  36. Kohlmann, K., P. Kersten & M. Flajšhans, 2005. Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247: 253–266.CrossRefGoogle Scholar
  37. Kosswig, C., 1955. Zoogeography of the near east. Systematic Zoology 4: 49–73.CrossRefGoogle Scholar
  38. Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World Map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.CrossRefGoogle Scholar
  39. Kuru, M., 2004. Recent systematic status of inland water fishes of Turkey (in Turkish, with English abstract). Gazi Eğitim Fakültesi Dergisi Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, Cilt 24, Sayı (3) 24: 1–21.Google Scholar
  40. Küçük, F., 2006. Türkiye’deki bazı endemik içsu balıklarının Dünya Doğayı Koruma Birliği (IUCN) Ölçütlerine göre değerlendirilmesi 1. Ulusal Balıklandırma ve Rezervuar Yönetimi Sempozyumu Bildiriler Kitabı: 151–160.Google Scholar
  41. Küçük, F., 2012. Extinct endemic fishes of Turkey: Alburnus akili (Gövce) and Pseudophoxinus handlirschi (Kavinne) (Pisces: Cyprinidae). Turkish Journal of Fisheries and Aquatic Sciences 12: 345–347.Google Scholar
  42. Küçük, F., H. M. Sari, O. Demir & İ. Gülle, 2009. Review of the ichthyofaunal changes in Lake Eğirdir between 1915 and 2007. Turkish Journal of Zoology 33: 277–286.Google Scholar
  43. Levi, E. E., Aİ. Çakıroğlu, T. Bucak, B. V. Odgaard, T. A. Davidson, E. Jeppesen & M. Beklioğlu, 2014. Similarity between contemporary vegetation and plant remains in the surface sediment in Mediterranean lakes. Freshwater Biology 59: 724–736.CrossRefGoogle Scholar
  44. MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  45. Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. American Zoologist 19: 331–343.CrossRefGoogle Scholar
  46. Matsuzaki, S.-I. S., N. Usio, N. Takamura & I. Washitani, 2009. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158: 673–686.CrossRefPubMedGoogle Scholar
  47. McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models. Chapman and Hall/CRC, London.CrossRefGoogle Scholar
  48. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  49. Memiş, D. & K. Kohlmann, 2006. Genetic characterization of wild common carp (Cyprinus carpio L.) from Turkey. Aquaculture 258: 257–262.CrossRefGoogle Scholar
  50. Menezes, R. F., F. Borchsenius, J.-C. Svenning, M. Søndergaard, T. L. Lauridsen, F. Landkildehus & E. Jeppesen, 2013. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter? Hydrobiologia 710: 47–59.CrossRefGoogle Scholar
  51. Miller, S. A. & T. A. Crowl, 2006. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biology 51: 85–94.CrossRefGoogle Scholar
  52. Oikonomou, A., F. Leprieur & I. D. Leonardos, 2014. Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia 738: 205–225.CrossRefGoogle Scholar
  53. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, & H. Wagner, 2013. Vegan: community ecology package. R package version 2.0-8.Google Scholar
  54. Özcan, G., 2008. Threatened fishes of the world: Chondrostoma meandrense Elvira, 1987 (Cyprinidae). Environmental Biology of Fishes 83: 297–298.CrossRefGoogle Scholar
  55. Özuluğ, M. & J. Freyhof, 2011. Revision of the genus Squalius in Western and Central Anatolia, with description of four new species (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 22: 107–148.Google Scholar
  56. Persson, L. & P. Eklöv, 1995. Refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.CrossRefGoogle Scholar
  57. R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, URL.
  58. Reyjol, Y., B. Hugueny, D. Pont, P. G. Bianco, U. Beier, N. Caiola, F. Casals, I. Cowx, T. Ferreira, G. Haidvogl, R. Noble, A. de Sostoa, T. Vigneron & T. Virbickas, 2007. Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography 16: 65–75.CrossRefGoogle Scholar
  59. Ribeiro, F. & P. M. Leunda, 2012. Non-native fish impacts on Mediterranean freshwater ecosystems: current knowledge and research needs. Fisheries Management and Ecology 19: 142–156.CrossRefGoogle Scholar
  60. Savini, D., A. Occhipinti-Ambrogi, A. Marchini, E. Tricarico, F. Gherardi, S. Olenin & S. Gollasch, 2010. The top 27 animal alien species introduced into Europe for aquaculture and related activities. Applied Ichthyology 26: 1–7.CrossRefGoogle Scholar
  61. Şekercioğlu, Ç. H., S. Anderson, E. Akçay, R. Bilgin, Ö. E. Can, G. Semiz, Ç. Tavşanoğlu, M. B. Yokeş, A. Soyumert, K. İpekdal, İ. K. Sağlam, M. Yücel & H. Nüzhet Dalfes, 2011. Turkey’s globally important biodiversity in crisis. Biological Conservation 144: 2752–2769.CrossRefGoogle Scholar
  62. Tarkan, A. S., S. M. Marr & F. G. Ekmekç, 2015. Non-native and translocated freshwater fish species in Turkey. FiSHMED Fishes in Mediterranean Environments 2015(003): 28p.Google Scholar
  63. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  64. Turan, D., M. Kottelat & S. Engin, 2009. Two new species of trouts, resident and migratory, sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyological Exploration of Freshwaters 20: 333–364.Google Scholar
  65. Ünver, B. & F. Erk’akan, 2011. Diet composition of chub, Squalius cephalus (Teleostei: Cyprinidae), in Lake Tödürge, Sivas, Turkey. Journal of Applied Ichthyology 27: 1350–1355.CrossRefGoogle Scholar
  66. Volta, P., A. Oggioni, R. Bettinetti & E. Jeppesen, 2011. Assessing lake typologies and indicator fish species for Italian natural lakes using past fish richness and assemblages. Hydrobiologia 671: 227–240.CrossRefGoogle Scholar
  67. Wildekamp, R. H., F. Küçük, M. Ünlüsayın & W. van Neer, 1999. Species and subspecies of the genus Aphanius Nardo 1897 (Pisces: Cyprinodontidae) in Turkey. Turkish Journal of Zoology 23: 23–44.Google Scholar
  68. Winemiller, K. O., 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60: 331–367.CrossRefGoogle Scholar
  69. Yalçın-Özdilek, Ş., Ş. G. Kırankaya & F. G. Ekmekçi, 2013. Feeding ecology of the topmouth gudgeon Pseudorasbora parva (Temminck and Schlegel, 1846) in the Gelingüllü Reservoir, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 13: 87–94.Google Scholar
  70. Zhao, S., J. Fang, C. Peng, Z. Tang & S. Piao, 2006. Patterns of fish species richness in China’s lakes. Global Ecology and Biogeography 15: 386–394.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Boll
    • 1
    Email author
  • Eti E. Levi
    • 1
  • Gizem Bezirci
    • 1
  • Müfit Özuluğ
    • 2
  • Ülkü Nihan Tavşanoğlu
    • 1
  • Ayşe İdil Çakıroğlu
    • 1
  • Seval Özcan
    • 3
  • Sandra Brucet
    • 4
    • 5
  • Erik Jeppesen
    • 4
    • 6
    • 7
  • Meryem Beklioğlu
    • 1
    • 8
    Email author
  1. 1.Limnology Laboratory, Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Biology, Science FacultyIstanbul UniversityIstanbulTurkey
  3. 3.Department of Biology, Faculty of Science and LettersPamukkale UniversityDenizliTurkey
  4. 4.Department of BioscienceAarhus UniversitySilkeborgDenmark
  5. 5.Aquatic Ecology Group, BETA Technology CentreICREA and University of Vic-Central University of CataloniaVicSpain
  6. 6.Arctic Research Centre (ARC)Aarhus UniversityAarhusDenmark
  7. 7.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  8. 8.Kemal Kurdaş Ecological Research and Training Stations, Lake EymirMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations