, Volume 770, Issue 1, pp 173–191 | Cite as

The influence of stream discontinuity and life history strategy on mussel community structure: a case study from the Sabine River, Texas

  • Charles R. Randklev
  • Neil Ford
  • Steve Wolverton
  • James H. Kennedy
  • Clint Robertson
  • Kevin Mayes
  • David Ford
Primary Research Paper


The impoundment of running waters is a threat to freshwater mussels and has only been cursorily examined in Texas. To address this, we evaluate mussel assemblage structure in the Sabine River downstream of a flood control and hydropower reservoir. We use the serial discontinuity concept (SDC) and the Life History Continuum model (LHCM) to explain relationships between stream position (i.e., downstream distance from either dam) and mussel species richness, catch-per-unit effort (CPUE), and life history strategy. Using 90th, 85th, and 80th quantile regression models, we observed that mussel species richness and abundance were reduced for stream segments located near Lake Tawakoni and Toledo Bend Reservoir and that these reductions decreased with distance from either reservoir. We also observed significant shifts in life history composition of mussel assemblages depending on stream position from either dam. Opportunistic strategists were more abundant in reaches located immediately downstream of Lake Tawakoni and Toledo Bend Reservoir whereas periodic and equilibrium strategists were most abundant in reaches located at intermediate distances from either reservoir. Findings from this study confirm the negative impact large impoundments have on downstream mussel populations and demonstrate the value of using the SDC and LHCM for evaluating mussel response to river impoundment.


Freshwater mussels Unionidae Flow regulation Assemblage structure Impoundment 



We thank Mark Cordova, Joe Skorupski, Ben Lundeen, Eric Tsakiris, Melissa Broderick, Ashley Walters, and Bryan Sowards for their assistance in the field. We gratefully acknowledge Ben Bosman and Wendell Haag for valuable comments on earlier drafts of this manuscript. Funding for this project was provided in part by the Texas Parks and Wildlife Department, the United States Fish and Wildlife Service, and the Sabine River Authority.


  1. Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.CrossRefGoogle Scholar
  2. Atkinson, C. L. & C. C. Vaughn, 2015. Biogeochemical hotspots: temporal and spatial scaling of the impact of freshwater mussels on ecosystem function. Freshwater Biology 60: 563–574.CrossRefGoogle Scholar
  3. Barnhart, C. M., W. R. Haag & W. N. Roston, 2008. Adaptations to host infection and larval parasitism in Unionoida. Journal of North American Benthological Soceity 27: 370–394.CrossRefGoogle Scholar
  4. Baxter, R. M., 1977. Environmental effects of dams and impoundments. Annual Review of Ecological Systematics 8: 225–283.CrossRefGoogle Scholar
  5. Blakeslee, C. J., H. S. Galbraith, L. S. Robertson & J. White, 2013. The effects of salinity exposure on multiple life stages of a common freshwater mussel, Elliptio complanata. Environmental Toxicology and Chemistry 32: 2849–2854.CrossRefPubMedGoogle Scholar
  6. Brim, B. J. & J. Mossa, 1999. Sediment, land use, and freshwater mussels: prospects and problems. Journal of the North American Benthological Society 18: 99–117.CrossRefGoogle Scholar
  7. Burlakova, L. E., A. Y. Karatayev, V. A. Karatayev, M. E. May, D. L. Bennett & M. J. Cook, 2011. Biogeography and conservation of freshwater mussels (Bivalvia: Unionidae) in Texas: patterns of diversity and threats. Diversity and Distributions 17: 393–407.CrossRefGoogle Scholar
  8. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.CrossRefPubMedGoogle Scholar
  9. Cade, B. S. & B. R. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412–420.CrossRefGoogle Scholar
  10. Crawley, M. J., 2007. The R Book. John Wiley & Sons Limited, West Sussex.CrossRefGoogle Scholar
  11. Dowell, C. L. & S. D. Breeding, 1967. Dams and Reservoirs in Texas: Historical and Descriptive Information. Texas Water Development Board Report No. 48: 274 pp.Google Scholar
  12. Dunham, J. B., B. S. Clad & J. W. Terrell, 2002. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles. Transactions of the American Fisheries Society 131: 86–98.CrossRefGoogle Scholar
  13. Ellis, L. C. & N. E. Jones, 2013. Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environmental Reviews 21: 136–148.CrossRefGoogle Scholar
  14. Federal Energy Regulatory Commission (FERC), 2013. Final environmental impact statement for hydropower license. Toledo Bend Hydroelectric Project No. 2305-036, 304 pp.Google Scholar
  15. Ford, N. B. & M. L. Nicholson, 2006. A survey of freshwater mussels (Unionidae) of the Old Sabine Wildlife Management Area, Smith County, Texas. Texas Journal of Science 58: 243–254.Google Scholar
  16. Ford, N. B., J. Gullett & M. E. May, 2009. Diversity and abundance of unionid mussels in three sanctuaries on the Sabine River in northeast Texas. Texas Journal of Science 61: 279–294.Google Scholar
  17. Graf, W. L., 1999. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 35: 1305–1311.Google Scholar
  18. Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  19. Haag, W. R. & M. L. Warren, 1998. Role of ecological factors and reproductive strategies in structuring freshwater mussel communities. Canadian Journal of Fisheries and Aquatic Sciences 55: 297–306.CrossRefGoogle Scholar
  20. Hao, L. & D. Q. Naiman, 2007. Quantile Regression. Sage Publications, Thousand Oaks.Google Scholar
  21. Howells, R. G., R. W. Neck & H. D. Murray, 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Press, Austin.Google Scholar
  22. Howells, R. G., C. M. Mather & J. A. M. Bergmann, 2000. Impacts of dewatering and cold on freshwater mussels (Unionidae) in B.A. Steinhagen Reservoir. Texas. The Texas Journal of Science 52: 93–104.Google Scholar
  23. Huang, J., Y. Cao & K. S. Cummings, 2011. Assessing sampling adequacy of mussel diversity surveys in wadeable Illinois streams. Journal of the North American Benthological Society 30: 932–934.CrossRefGoogle Scholar
  24. Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.CrossRefGoogle Scholar
  25. Karatayev, A. Y., T. D. Miller & L. E. Burlakova, 2012. Long-term changes in unionid assemblages in the Rio Grande, one of the World’s top 10 rivers at risk. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 206–219.CrossRefGoogle Scholar
  26. Koenker, R. & G. Bassett Jr, 1978. Regression quantiles. Econometrica 46: 33–50.CrossRefGoogle Scholar
  27. Konrad, C. P., M. D. Brasher & J. T. May, 2008. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology 53: 1983–1998.CrossRefGoogle Scholar
  28. Layzer, J. B., M. E. Gordon & R. M. Anderson, 1993. Mussels: the forgotten fauna of regulated rivers. A case study of the Caney Fork River. Regulated Rivers: Research & Management 8: 63–71.CrossRefGoogle Scholar
  29. Lyons, M. S., R. A. Krebs, J. P. Holt, L. J. Rundo & W. Zawiski, 2007. Assessing causes of change in freshwater mussels (Bivalvia: Unionidae) in the Black River, Ohio. American Midland Naturalist 158: 1–15.CrossRefGoogle Scholar
  30. McAllister, D., J. Craig, N. Davidson, D. Murray & M. Seddon, 2001. Biodiversity impacts of large dams. Background Paper No. 1. In The International Union for Conservation of Nature, and United Nations Environmental Programme. Gland: 63 pp.Google Scholar
  31. MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Monographs in Population Biology, Vol. 1. Princeton University Press, Princeton.Google Scholar
  32. Magilligan, F. J. & K. H. Nislow, 2005. Changes in hydrologic regime by dams. Geomorphology 71: 61–78.CrossRefGoogle Scholar
  33. Mims, M. C. & J. D. Olden, 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93: 35–45.CrossRefPubMedGoogle Scholar
  34. Neck, R. W., 1986. Freshwater bivalves of Lake Tawakoni, Sabine River, Texas. The Texas Journal of Science 38: 241–249.Google Scholar
  35. Neck, R. W., 1990. Geologic substrate and human impact on bivalves of Lake Lewisville, Trinity River, Texas. The Nautilus 104: 16–25.Google Scholar
  36. National Inventory of Dams (NID), 2014. U. S. Army Corps of Engineers National Inventory of Dams.
  37. Parmalee, P. W. & A. E. Bogan, 1998. The Freshwater Mussels of Tennessee. The University of Tennessee Press, Knoxville.Google Scholar
  38. Phillips, J. D., 2008. Geomorphic controls and transition zones in the lower Sabine River. Hydrological Processes 22: 2424–2437.CrossRefGoogle Scholar
  39. Pianka, E. R., 1970. On r- and K-selection. American Midland Naturalist 104: 592–597.CrossRefGoogle Scholar
  40. Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  41. Poff, N. L. & D. D. Hart, 2002. How dams vary and why it matters for the emerging science of dam removal. BioScience 52: 659–668.CrossRefGoogle Scholar
  42. Quinn, J. W. & T. J. Kwak, 2003. Fish assemblage changes in an Ozark River after impoundment: a long-term perspective. Transactions of the American Fisheries Society 132: 110–119.CrossRefGoogle Scholar
  43. R Core Development Team, 2011. R (version 2.11.2): A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  44. Randklev, C. R., B. J. Lundeen, J. Skorupski, J. H. Kennedy & S. Wolverton, 2011. Toledo Bend relicensing project: Lower Sabine River mussel study. Final report to Sabine River Authority: 19 pp.Google Scholar
  45. Randklev, C. R., M. S. Johnson, E. T. Tsakiris, J. Groce & N. Wilkins, 2013. Status of the freshwater mussel (Family: Unionidae) fauna in the mainstem of the Leon River, Texas. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 390–404.CrossRefGoogle Scholar
  46. Randklev, C. R., M. Cordova, J. Groce, E. Tsakiris & B. Sowards, 2014. Freshwater mussel survey (Family: Unionidae) of the lower Sabine River between U. S. Hwy 190 and Orange, Texas. Final report to Texas Parks and Wildlife :37 pp.Google Scholar
  47. Rogers, W. H., 1992. Quantile regression standard errors. Stata Technical Bulletin 9: 16–19.Google Scholar
  48. Rosenberg, D. M., P. McCully & C. M. Pringle, 2000. Globalscale environmental effects of hydrological alterations: introduction. Bioscience 50: 746–751.CrossRefGoogle Scholar
  49. Sabine-Neches Basin and Bay Expert Science Team (Sabine-Neches BBEST), 2009. Environmental flows recommendations report. Final report to Sabine and Neches Rivers and Sabine Lake Bay and Basin and Bay Area Stakeholder Committee, Environmental Flows Advisory Group, and Texas Commission on Environmental Quality, 1215 pp.Google Scholar
  50. Sabine River Authority (SRA), 2014. Sabine River Authority Projects.
  51. Skalak, K. J., A. J. Benthem, E. R. Schenk, C. R. Hupp, J. M. Galloway, R. A. Nustad & G. J. Wiche, 2013. Large dams and alluvial rivers in the Anthropocene: the impacts of the Garrison and Oahe Dams on the upper Missouri River. Anthropocene 2: 51–64.CrossRefGoogle Scholar
  52. Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.CrossRefGoogle Scholar
  53. Southwood, T. R. E., 1988. Tactics, strategies and templates. Oikos 52: 3–18.CrossRefGoogle Scholar
  54. Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.Google Scholar
  55. Strayer, D. L., 2014. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735: 277–292.CrossRefGoogle Scholar
  56. Suttkus, R. D. & M. F. Mettee, 2009. Post-impoundment changes in the Cyprinid fauna of the lower Sabine River, Louisiana and Texas. Southeastern Fishes Council Proceedings 51: 1–8.Google Scholar
  57. Texas Parks and Wildlife Department (TPWD), 2010. Threatened and endangered nongame species. Texas Register 35: 249–251.Google Scholar
  58. Texas Water Development Board (TWDB), 2012. State water plan. Texas Water Development Board, 314 pp.
  59. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: bio complexity in river networks across space and time. River and Research Applications 22: 123–147.CrossRefGoogle Scholar
  60. Thorp, J. H., M. C. Thoms & M. D. Delong, 2008. The Riverine Ecosystem Synthesis: Towards conceptual cohesiveness in river science. Academic Press, London.Google Scholar
  61. U. S. Fish and Wildlife Service (USFWS), 2001. Endangered and threatened wildlife and plants: Review of plant and animal species that are candidates or proposed for listing as endangered or threatened, annual notice of findings on recycled petitions, and annual description of progress on listing actions; proposed rule. Federal Register 66: 54808–54832.Google Scholar
  62. U. S. Fish and Wildlife Service (USFWS), 2011. Endangered and threatened wildlife and plants: 12-month finding on a petition to list Texas fatmucket, golden orb, smooth pimpleback, Texas pimpleback, and Texas fawnsfoot as threatened or endangered. Federal Register 76: 62166–62212.Google Scholar
  63. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  64. Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.CrossRefGoogle Scholar
  65. Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.CrossRefGoogle Scholar
  66. Vaughn, C. C. & D. E. Spooner, 2004. Status of the mussel fauna of the Poteau River and implications for commercial harvest. American Midland Naturalist 152: 336–346.CrossRefGoogle Scholar
  67. Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrate assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.CrossRefGoogle Scholar
  68. Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.CrossRefGoogle Scholar
  69. Vaughn, C. C., C. L. Atkinson & J. P. Julian, 2015. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecology and Evolution 5: 1291–1305.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vaz, S., C. S. Martin, P. D. Eastwood, B. Ernande, A. Carpentier, G. J. Meaden & F. Coppin, 2008. Modelling species distributions using regression quantiles. Journal of Applied Ecology 45: 204–217.CrossRefGoogle Scholar
  71. Voelz, N. J. & J. V. Ward, 1990. Macroinvertebrate responses along a complex regulated stream environmental gradient. Regulated Rivers: Research & Management 5: 365–374.CrossRefGoogle Scholar
  72. Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds.), Dynamics of Lotic Ecosystems. Ann Arbor Science Publishers, Ann Arbor: 29–42.Google Scholar
  73. White, D. S. & S. J. White, 1977. Observations on the pelecypods of Lake Texoma, Texas and Oklahoma, after more than thirty years of impoundment. The Southwestern Naturalist 22: 235–254.CrossRefGoogle Scholar
  74. Williams, J. D., S. L. H. Fuller & R. Grace, 1992. Effects of impoundments on freshwater mussels (Mollusca: Bivalvia: Unionidae) in the main channel of the Black Warrior and Tombigbee Rivers in western Alabama. Bulletin of the Alabama Museum of Natural History 13: 1–10.Google Scholar
  75. Williams, J. D., J. T. Garner & A. E. Bogan, 2008. Freshwater Mussels of Alabama and the Mobile Basin in Georgia. The University of Alabama Press, Tuscaloosa, Mississippi and Tennessee.Google Scholar
  76. Williams, J. D., R. S. Butler, G. L. Warren & N. A. Johnson, 2014. Freshwater Mussels of Florida. The University of Alabama Press, Tuscaloosa.Google Scholar
  77. Winemiller, K. O., 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62: 872–885.CrossRefGoogle Scholar
  78. Winemiller, K. O. & K. A. Rose, 1992. Patterns of life history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Science 49: 2196–2218.CrossRefGoogle Scholar
  79. Wisniewski, J. M., N. M. Rankin, D. A. Weiler, B. A. Strickland & H. C. Chandler, 2013. Occupancy and detection of benthic macroinvertebrates in the lower Flint River, Georgia, USA. Freshwater Science 32: 1122–1135.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Charles R. Randklev
    • 1
  • Neil Ford
    • 2
  • Steve Wolverton
    • 3
  • James H. Kennedy
    • 4
  • Clint Robertson
    • 5
  • Kevin Mayes
    • 5
  • David Ford
    • 6
  1. 1.Texas A&M Institute of Renewable Natural ResourcesCollege StationUSA
  2. 2.Department of BiologyUniversity of Texas at TylerTylerUSA
  3. 3.Department of GeographyUniversity of North TexasDentonUSA
  4. 4.Department of BiologyUniversity of North TexasDentonUSA
  5. 5.River Studies ProgramTexas Parks and WildlifeSan MarcosUSA
  6. 6.Halff Associates, Inc.RichardsonUSA

Personalised recommendations