, Volume 780, Issue 1, pp 5–20 | Cite as

Semi-analytical prediction of Secchi depth using remote-sensing reflectance for lakes with a wide range of turbidity

  • Takehiko FukushimaEmail author
  • Bunkei Matsushita
  • Yoichi Oyama
  • Kazuya Yoshimura
  • Wei Yang
  • Meylin Terrel
  • Shimako Kawamura
  • Akito Takegahara


It is crucial to monitor light environments in large lakes using satellite remote-sensing data. Many studies have proposed prediction schemes of transparency information, but most of them were site-specific. Here, we applied semi-analytical retrieval procedures of inherent optical properties from in situ-measured remote-sensing reflectance and then predicted the Secchi depth (SD) using contrast transmittance theory. Two types of water regions (clear or turbid waterbodies) were first classified based on spectral characteristics, and a selection from two retrieval procedures for clear and turbid water bodies was made. The relationship between the SD and the sum of attenuation coefficients (beam and diffuse attenuation coefficients), which arises in contrast transmittance theory, was determined by analyzing the data from the previous research. The predicted SD values were compared with the observed values in 10 Japanese lakes with a wide variety of turbidity (SD 0.4–17 m). Fairly good agreement between the predicted and observed SD values was obtained, indicating the usefulness of this prediction scheme. We then made an accuracy comparison with the results obtained by previous studies, and we discuss the coefficients and the discrepancies between the measured and predicted SD values in addition to the future directions of this approach.


Secchi depth Lakes Remote sensing Semi-analytical prediction Hybrid model 



This research was supported in part by Grants-in Aid for Scientific Research from the Ministry of Education, Culture, Sport, Science and Technology (MEXT), Japan (Nos. 23404015 and 25420555), the Global Environment Research Fund (S9-4) of the Ministry of Environment, Japan, and the River Fund (27-1271-001) in charge of The River Foundation, Japan. We express our appreciation to two anonymous reviewers for constructive criticisms on an earlier version of the manuscript.


  1. Alparslan, E., C. Aydöner, V. Tufekci & H. Tüfekci, 2007. Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment 135: 391–398.CrossRefPubMedGoogle Scholar
  2. Binding, C. E., J. H. Jerome, R. P. Bukata & W. G. Booty, 2007. Trends in water clarity of the lower Great Lakes from remotely sensed aquatic color. Journal of Great Lakes Research 33: 828–841.CrossRefGoogle Scholar
  3. Bowers, D. G., G. E. L. Harker, P. S. D. Smith & P. Tett, 2000. Optical properties of a region of freshwater influence (the Clyde Sea). Estuarine Coastal and Shelf Science 50: 717–726.CrossRefGoogle Scholar
  4. Chen, Z., F. E. Muller-Karger & C. Hu, 2007. Remote sensing of water clarity in Tampa Bay. Remote Sensing of Environment 109: 249–259.CrossRefGoogle Scholar
  5. Chipman, J. W., T. M. Lilles, J. E. Schmaltz, J. E. Leale & M. J. Nordheim, 2004. Mapping lake water clarity with Landsat images in Wisconsin, USA. Canadian Journal of Remote Sensing 30: 1–7.CrossRefGoogle Scholar
  6. Davies-Colley, R. J., 1988. Measuring water clarity with a black disk. Limnology and Oceanography 33: 616–623.CrossRefGoogle Scholar
  7. Doerffer, R. & H. Schiller, 2007. The MERIS case 2 water algorithm. International Journal of Remote Sensing 28: 517–535.CrossRefGoogle Scholar
  8. Doron, M., M. Babin, O. Hembise, A. Mangin & P. Garnesson, 2011. Ocean transparency from space: validation of algorithms using MERIS, MODIS and Sea WiFS data. Remote Sensing of Environment 115: 2986–3001.CrossRefGoogle Scholar
  9. Fukushima, T. & H. Arai, 2015. Regime shifts observed in Lake Kasumigaura, a large shallow lake in Japan: analysis of a 40-year limnological record. Lakes and Reservoirs: Research and Management 20: 54–68.CrossRefGoogle Scholar
  10. Giardino, C., M. Pepe, P. A. Brivio, P. Ghezzi & E. Zilioli, 2001. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of the Total Environment 268: 19–29.CrossRefPubMedGoogle Scholar
  11. Giardino, C., M. Bresciani, P. Villa & A. Martinelli, 2010. Application of remote sensing in water resource management: the case study of Lake Trasimeno, Italy. Water Resources Management 24: 3885–3899.CrossRefGoogle Scholar
  12. Gower, J., S. King, G. Borstad & L. Brown, 2005. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing 26: 2005–2012.CrossRefGoogle Scholar
  13. Ha, J. Y., T. Hanazato, K. H. Chang, K. S. Jeong & D. K. Kim, 2015. Assessment of the lake biomanipulation mediated by piscivorous rainbow trout and herbivorous daphnids using a self-organizing map: a case study in Lake Shirakaba, Japan. Ecological Informatics 29: 182–191.Google Scholar
  14. Hale, G. M. & M. R. Querry, 1973. Optical-constants of water in 200-nm to 200-micrometer wavelength region. Applied Optics 12: 555–563.CrossRefPubMedGoogle Scholar
  15. Härmä, P., J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo & S. Koponen, 2001. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Science of the Total Environment 268: 107–121.CrossRefPubMedGoogle Scholar
  16. Hellweger, F. L., P. Schlosser, U. Lall & J. K. Weissel, 2004. Use of satellite imagery for water quality studies in New York Harbor. Estuarine, Coastal and Shelf Science 61: 437–448.CrossRefGoogle Scholar
  17. Hicks, B. J., G. A. Stichbury, L. K. Brabyn, M. G. Allan & S. Ashraf, 2013. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environmental Monitoring and Assessment 185: 7245–7726.CrossRefPubMedGoogle Scholar
  18. Hoge, F. E. & P. E. Lyon, 1996. Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors. Journal of Geophysical Research Oceans 101(C7): 16631–16648.CrossRefGoogle Scholar
  19. Holmes, R. W., 1970. Secchi disc in turbid coastal waters. Limnology and Oceanography 15: 688–694.CrossRefGoogle Scholar
  20. Japan Meteorological Agency, 2015. Past Meteorological Data [available on internet at]. Cited 14 October 2015.
  21. Kabbara, N., J. Benkhelil, M. Awad & V. Barale, 2008. Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing 63: 488–495.CrossRefGoogle Scholar
  22. Kirk, J. T. O., 1984. Dependence of relationship between inherent and apparent optical-properties of water on solar altitude. Limnology and Oceanography 29: 350–356.CrossRefGoogle Scholar
  23. Kloiber, S. M., P. L. Brezonik & M. E. Bauer, 2002. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research 36: 4330–4340.CrossRefPubMedGoogle Scholar
  24. Koponen, S., J. Pulliainen, K. Kallio & M. Hallikainen, 2002. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing of Environment 79: 51–59.CrossRefGoogle Scholar
  25. Kratzer, S., B. Haekansson & C. Sahlin, 2003. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 32(8): 577–585.CrossRefPubMedGoogle Scholar
  26. Kratzer, S., C. Brockmann & G. Moore, 2008. Using MERIS full resolution data to monitor coastal waters – a case study from Himmerfjarden, a fjord-like bay in the northwestern Baltic Sea. Remote Sensing of Environment 112: 2284–2300.CrossRefGoogle Scholar
  27. Larson, G. L., R. Collier & M. W. Buktenica, 2007. Long-term limnological research and monitoring at Crater Lake, Oregon. Hydrobiologia 574: 1–11.CrossRefGoogle Scholar
  28. Lathrop, R. G., T. M. Lilles & B. S. Yandell, 1991. Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters. International Journal of Remote Sensing 12: 2045–2063.CrossRefGoogle Scholar
  29. Lee, Z. P., K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis & J. S. Patch, 1998. An empirical algorithm for light absorption by ocean water based on color. Journal of Geophysical Research Oceans 103(C12): 27967–27978.CrossRefGoogle Scholar
  30. Lee, Z. P., K. L. Carder & R. A. Arnone, 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics 41(27): 5755–5772.CrossRefPubMedGoogle Scholar
  31. Lee, Z. P., K. P. Du & R. Arnone, 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research Oceans 110(C02): 016.Google Scholar
  32. Lee, Z. P., A. Weidemann, J. Kindle, R. Arnone, K. L. Carder & C. Davis, 2007. Euphotic zone depth: its derivation and implication to ocean-color remote sensing. Journal of Geophysical Research Oceans 112(C3): 009.Google Scholar
  33. Lee Z. P., B. Lubac, J. Werdell & R. Arnone, 2009. An update of the quasi-analytical algorithm (QAA_v5) [available on internet at]. Cited 20 October 2014.
  34. Mancino, G., A. Nole, V. Urbano, M. Amato & A. Ferrara, 2009. Assessing water quality by remote sensing in small lakes: the case study of Monticchio lakes in southern Italy. iForest: Biogeoscience and Forestry 2: 154–161.CrossRefGoogle Scholar
  35. Matsushita, B., W. Yang, G. Yu, Y. Oyama, K. Yoshimura & T. Fukushima, 2015. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS Journal of Photogrammetry and Remote Sensing 102: 28–37.CrossRefGoogle Scholar
  36. Matthews, M. W., S. Bernard & L. Robertson, 2012. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sensing of Environment 124: 637–652.CrossRefGoogle Scholar
  37. Mobley, C. D., 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics 38: 7442–7455.CrossRefPubMedGoogle Scholar
  38. Mobley, C. D., B. Gentili, H. R. Gordon, Z. H. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes & R. H. Stavn, 1993. Comparison of numerical-models for computing underwater light fields. Applied Optics 32: 7484–7504.CrossRefPubMedGoogle Scholar
  39. Moore, T. S., M. D. Dowell, S. Bradt & A. R. Verdu, 2014. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sensing of Environment 143: 97–111.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Morel, A., 1974. Optical properties of pure sea water. In Optical Aspects of Oceanography. Academic, London.Google Scholar
  41. Nakagawa, K., 2015. Calculation of zenith angle [available on internet at]. Cited at 15 February 2015.
  42. Nelson, S. A., P. A. Soranno, K. S. Cheruvelil, S. A. Batzli & D. L. Skole, 2003. Regional assessment of lake water clarity using satellite remote sensing. Journal of Limnology 62(Suppl. 1): 27–32.CrossRefGoogle Scholar
  43. Odermatt, D., F. Pomati, J. Pitarch, J. Carpenter, M. Kawka, M. Schaepman & A. Wueest, 2012. MERIS observations of phytoplankton blooms in a stratified eutrophic lake. Remote Sensing of Environment 126: 232–239.CrossRefGoogle Scholar
  44. Olmanson, L. G., M. E. Bauer & P. L. Brezonik, 2008. A 20-year Landsat water clarity census of Minnesota’s 10000 lakes. Remote Sensing of Environment 112: 4086–4097.CrossRefGoogle Scholar
  45. Olmanson, L. G., P. L. Brezonik & M. E. Bauer, 2014. Geospatial and temporal analysis of a 20-year record of Landsat-based water clarity in Minnesota’s 10,000 lakes. Journal of the American Water Resources Association 50(3): 748–761.CrossRefGoogle Scholar
  46. Pope, R. M. & E. S. Fry, 1997. Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements. Applied Optics 36: 8710–8723.CrossRefPubMedGoogle Scholar
  47. Preisendorfer, R. W., 1986. Secchi disc science – visual optics of natural-waters. Limnology and Oceanography 31: 909–926.CrossRefGoogle Scholar
  48. Reference Solar Spectral Irradiance – ASTM G-173 [available on internet at]. Cited 15 February 2015.
  49. Roesler, C. S. & M. J. Perry, 1995. In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. Journal of Geophysical Research Oceans 100(C7): 13279–13294.CrossRefGoogle Scholar
  50. Sass, G. Z., I. F. Creed, S. E. Bayley & K. J. Devito, 2007. Understanding variation in trophic status of lakes on the Boreal Plain: a 20 year retrospective using Landsat TM imagery. Remote Sensing of Environment 109: 127–141.CrossRefGoogle Scholar
  51. Sawaya, K. E., L. G. Olmanson, N. J. Heinert, P. L. Brezonik & M. E. Bauer, 2003. Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment 88: 144–156.CrossRefGoogle Scholar
  52. SCOR UNESCO, 1966. Determination of photosynthetic pigment in seawater. Monographs on Oceanographic Methodology. UNESCO, Paris.Google Scholar
  53. Takami, S., 2011. Light measurement in ecological studies. Climate in Biosphere 11: A1–A7 (in Japanese).CrossRefGoogle Scholar
  54. Terrel, M. M., T. Fukushima, B. Matsushita, K. Yoshimura & A. Imai, 2012. Long-term light environment variability in Lake Biwa and Lake Kasumigaura, Japan: modeling approach. Limnology 13(2): 237–252.CrossRefGoogle Scholar
  55. Tyler, J. E., 1968. The Secchi disc. Limnology and Oceanography 13: 1–6.CrossRefGoogle Scholar
  56. Wu, G., J. Leeuw, A. K. Skidmore, H. T. Prins & Y. Liu, 2008. Comparison of MODIS and Landsat TM5 images for mapping tempo-spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China. International Journal of Remote Sensing 29: 2183–2198.CrossRefGoogle Scholar
  57. Yang, W., B. Matsushita, J. Chen, K. Yoshimura & T. Fukushima, 2013. Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE Transactions on Geoscience and Remote Sensing 51: 3761–3773.CrossRefGoogle Scholar
  58. Yang, W., B. Matsushita, J. Chen, K. Yoshimura & T. Fukushima, 2014. Application of a semianalytical algorithm to remotely estimate diffuse attenuation coefficient in turbid inland waters. IEEE Geoscience and Remote Sensing Letters 11: 1046–1050.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Takehiko Fukushima
    • 1
    Email author
  • Bunkei Matsushita
    • 1
  • Yoichi Oyama
    • 2
  • Kazuya Yoshimura
    • 3
  • Wei Yang
    • 4
    • 5
  • Meylin Terrel
    • 1
  • Shimako Kawamura
    • 1
  • Akito Takegahara
    • 1
  1. 1.Graduate School of Life and Environmental StudiesUniversity of TsukubaTsukubaJapan
  2. 2.Marimo Research CenterKushiro Board of EducationKushiroJapan
  3. 3.Sector of Fukushima Research and DevelopmentJapan Atomic Energy AgencyTokaimuraJapan
  4. 4.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  5. 5.State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina

Personalised recommendations