Skip to main content
Log in

Trace elemental distribution in ostracod valves. From solution ICPMS and laser ablation ICPMS to microprobe mapping: a tribute to Rick Forester

  • REMEMBERING RICK FORESTER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A historical perspective on our understanding of the formation of ostracod valves and what they consist of is presented here, together with the history of investigations on the chemistry of ostracod valves. It is now clear that ostracod valves are made of 3 distinct layers consisting of calcite crystallites/rhombs that are held together by a significant network of organic fibrils which may also contribute to the trace elemental composition of ostracod valves when analysed by solution chemistry. The outer epicuticle of ostracod valves, when well preserved such as in modern material, contributes to an enrichment in magnesium, and this ought to be taken into account when interpreting the Mg/Ca of ostracod valves for use with water temperature reconstructions. Recommendations about the analytical techniques used for chemical analysis of ostracod valves are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anadon, P., P. De Deckker & R. Julià, 1986. The Pleistocene lake deposits of the NE Baza Basin (Spain): salinity variations and ostracod succession. Hydrobiologia 143: 199–208.

    Article  CAS  Google Scholar 

  • Anadon, P., R. Julià, P. De Deckker, J.-C. Rosso & I. Soulié-Märsche, 1987. Contribución a la Paleolimnologia del Pleistoceno inferior de la Cuenca de Baza (sector Orce-Venta Micena). Paleontologia I Evolución, Memorià especial 1: 35–72.

    Google Scholar 

  • Bate, R. H. & B. East, 1972. The structure of the ostracod carapace. Lethaia 5: 177–194.

    Article  Google Scholar 

  • Bodergat, A.-M., 1978a. L’intensité lumineuse, son influence sur la teneur en phosphore des carapaces d’ostracodes. Géobios 11: 715–735.

    Article  Google Scholar 

  • Bodergat, A.-M., 1978b. Un marqueur instantané de la pollution en cérium dns la zone de Cortiou (Rade sud de Marseille, Bouches-du-Rhône) Aurila speyeri Bradi (sic), 1968 (Ostracoda, Podocopida). Documents du Laboratoire de Géologie de la Faculté des Sciences de Lyon Hors Série 4: 71–85.

    Google Scholar 

  • Bodergat, A.-M., 1983. Les ostracodes, témoins de leur environnement. Approche chimique et écologie en milieu lagunaire et océanique. Documents du Laboratoire de Géologie de la Faculté des Sciences de Lyon 88: 1–246.

    Google Scholar 

  • Bodergat A. M. & A. M. Andréani, 1981. Mise en évidence de la réponse adaptative d’une espèce euryhaline Cyprideis torosa (Jones, 1850) à des conditions écologiques difficiles par l’analyse multiélémentaire en spectrométrie de masse à étincelle. In Martinell, J. (ed.), International Symposium on “Concept and Method in Paleontology”, Department Paleontologia, University of Barcelona: 135–139.

  • Cadot, H. M., 1974. Magnesium content of calcite in carapaces of benthic Ostracoda. PhD thesis, University of Kansas, Lawrence: p. 111.

  • Cadot, H. M. & R. L. Kaesler, 1977. Magnesium content of calcite in carapaces of benthic marine Ostracoda. University of Kansas Paleontological Contributions 87: 1–23.

    Google Scholar 

  • Cadot, H. M., R. L. Kaesler & W. R. van Schmus, 1975. Applications of the electron microprobe analyzer to the study of the ostracode carapace. Bulletins of American Paleontology 65: 577–585.

    Google Scholar 

  • Chave, K. E., 1954. Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. The Journal of Geology 62: 266–283.

    Article  CAS  Google Scholar 

  • Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1983. Magnesium, strontium, and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions—a preliminary study. In Maddocks, R. F. (ed.), Applications of Ostracoda. 8th International Symposium on Ostracoda. University of Houston, Geosciences, Houston, Texas: 238–249.

  • Corrège, T., 1993. Preliminary results of palaeotemperature reconstruction using the magnesium to calcium ratio of deep-sea ostracode shells from the Late Quaternary of Site 822, Leg 133 (western Coral Sea). Proceedings of the ODP Scientific Results 133: 175–180.

    Google Scholar 

  • Corrège, T. & P. De Deckker, 1997. Faunal and geochemical evidence for change in intermediate water temperature and salinity in the western Coral Sea during the Late Quaternary. Palaeogeography Palaeoclimatology Palaeoecolology 131: 183–205.

    Article  Google Scholar 

  • Danielopol, D. L., et al., 2015. From Naples 1963 to Rome 2013—a brief review of how the International Research Group on Ostracoda (IRGO) developed as a social communication system. Palaeogeography Palaeoclimatology Palaeoecolology 419: 3–22.

    Article  Google Scholar 

  • De Deckker, P., 1977. The distribution of the ‘‘giant’’ ostracods (family: Cyprididae, Baird 1845) endemic to Australia. In Löffler, H. & D. Danielopol (eds), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracods. Junk, The Hague: 285–294.

    Google Scholar 

  • De Deckker, P., 1980. Terrestrial ostracods in Australia. Australian Museum Memoir 18: 87–100.

    Article  Google Scholar 

  • De Deckker, P., A. R. Chivas & J. M. G. Shelley, 1999. The uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeography, Palaeoclimatology, Palaeoecology 248: 105–116.

    Article  Google Scholar 

  • De Deckker, P., T. T. Barrows & J. Rogers, 2014. Land-sea correlations in the Australian region: post-glacial onset of the monsoon in northwestern Western Australia. Quaternary Science Reviews 105: 181–194.

    Article  Google Scholar 

  • Delaney, M. L. 1984. Foraminiferal Trace Elements: uptake, diagenesis, and 100 M.Y. Paleochemical History. Woods Hole Oceanographic Institution –Massachusetts Institute of Technology WHOI-84-2: p. 253.

  • Delaney, M. L., A. W. H. Bé & E. A. Boyle, 1985. Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores. Geochimica et Cosmochimica Acta 49: 1327–1341.

    Article  CAS  Google Scholar 

  • Depêche, F., 1982. Ultrastructure of the wall of two living ostracods, Herpetocypris chevreuxi (Sars) and Pontocythere elongata (Brady), in comparison with fossil ostracods from the Middle Jurassic of Normandy. In Bate, R. H., E. Robinson & L. M. Sheppard (eds), Fossil and Recent Ostracods. Ellis Horwood, Chichester: 61–74.

    Google Scholar 

  • Dwyer, G. S., T. M. Cronin, M. D. Raymo, J. S. Buzas & T. Corrège, 1995. North Atlantic deepwater temperature change during late Pliocene an late Quaternary climatic cycles. Science 270: 1347–1351.

    Article  CAS  Google Scholar 

  • Dwyer, G. S., T. M. Cronin & P. A. Baker, 2002. Trace elements in marine ostracodes. In Holmes, J. A. & A. R. Chivas (eds), The Ostracoda: Application in Quaternary Research. Geophysical Monograph Series 131. American Geophysical Union, Washington DC: 205–225.

    Chapter  Google Scholar 

  • Eggins, S. M., P. De Deckker & J. Marshall, 2003. Mg/Ca variation in planktonic foraminifera tests: implications for reconstructing palaeo-seawater temperature and habitat migration. Earth and Planetary Science Letters 212: 291–306.

    Article  CAS  Google Scholar 

  • Eggins, S., A. Y. Sadekov & P. De Deckker, 2004. Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: A complication for seawater thermometry? Earth and Planetary Science Letters 225: 411–419.

    Article  CAS  Google Scholar 

  • Forester, R. M., 1983. Relationship of two lacustrine ostracode species to solute composition and salinity. Geology 11: 435–438.

    Article  CAS  Google Scholar 

  • Gouramanis, C., D. Wilkins & P. De Deckker, 2010. 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 297: 223–237.

    Article  Google Scholar 

  • Holmes, J. A., 1996. Trace-elements and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction. Journal of Paleolimnology 15: 223–235.

    Article  Google Scholar 

  • Holmes, J. A., 1997. The palaeoenvironmental significance of iron and manganese in non-marine ostracod shells: a preliminary analysis. In Holmes, J. A. & K. Lynch (eds), The Kingston Papers: a Geographical Perspective on the Environment, Economy and Society. Kingston University, Kingston upon Thames: 198–212.

    Google Scholar 

  • Holmes, J. A. & A. R. Chivas, 2002. Ostracod shell chemistry—overview. In Holmes, J. A. & A. R. Chivas (eds), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph Series 131. American Geophysical Union, Washington DC: 183–294.

    Chapter  Google Scholar 

  • Horne, D. J., A. Cohen & K. Martens, 2002. Taxonomy, morphology and biology of quaternary and living Ostracoda. In Holmes, J. A. & A. R. Chivas (eds), The Ostracoda: Applications in Quaternary Research Geophysical Monograph Series 131. American Geophysical Union, Washington DC: 5–36.

    Chapter  Google Scholar 

  • Horne, D. J., R. J. Smith, J. E. Whittaker & J. W. Murray, 2004. The first British record and a new species of the superfamily Terrestricytheroidea (Crustacea, Ostracoda): morphology, ontogeny, lifestyle and phylogeny. Zoological Journal of the Linnean Society 142: 253–288.

    Article  Google Scholar 

  • Ito, E., 2002. Mg/Ca, Sr/Ca and δ13C chemistry of Quaternary ostracode shells from North American continental interior. In Holmes J. A. & A. R. Chivas (eds), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph Series 131. American Geophysical Union, Washington DC: 267–278.

    Chapter  Google Scholar 

  • Ito, E., P. De Deckker & S. M. Eggins, 2003. Ostracodes and their shell chemistry: implications for paleohydrologic and palaeoclimatologic applications. In: Park, L. E. & A. J. Smith (eds), Bridging the Gap. Trends in the Ostracode Biological and Geological Sciences. The Paleontological Papers 9: 119–151.

  • Kesling, R. V., 1951. The morphology of ostracod molt stages. Illinois Biological Monographs 21: 1–324.

    Google Scholar 

  • Keyser, D., 1982. Development of the sieve pores of Hirschmannia viridis (O. F. Müller, 1785). In Bate, R. H., E. Robinson & L. M. Sheppard (eds), Fossil and Recent Ostracods. Ellis Horwood, Chichester: 51–60.

    Google Scholar 

  • Keyser, D. & R. Walter, 2004. Calcification in ostracodes. Revista Española de Micropaleontología 36: 1–11.

    Google Scholar 

  • Langer, W., 1971. Rasterelektronmicroskopische beobachtungen über den feinbau von ostracoden-schalen. Paläontologische Zeitschrift 45: 181–186.

    Article  Google Scholar 

  • Langer, W., 1973. Zur ultrastruktur, mikromorphologie und taxonomie des ostracoda-carapax. Palaeontographica Abteilung A 144: 1–54.

    Google Scholar 

  • Morishita, T., A. Tsurumi & T. Kamiya, 2007. Magnesium and strontium distribution within valves of a recent marine ostracode, Neonesidea oligodentata: Implications for paleoenvironmental reconstructions. Geochemistry Geophysics Geosystems 8: Q07009.

    Article  Google Scholar 

  • Oertli, H. J., 1972. The conservation of ostracode tests—observations made under the scanning electron microscope. Bulletins of American Paleontology 65: 549–575.

    Google Scholar 

  • Palacios-Fest, M. R. & D. L. Dettman, 2001. Temperature controls monthly variation in ostracode valve Mg/Ca: Cypridopsis vidua from a small lake in Sonora, Mexico. Geochimica et Cosmochimica Acta 65: 2499–2508.

    Article  CAS  Google Scholar 

  • Rathburn, A. E. & P. De Deckker, 1997. Magnesium and strontium compositions of Recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay, Antarctica. Marine Micropaleontology 32: 231–248.

    Article  Google Scholar 

  • Rome, D. R., 1947. Herpetocypris reptans Baird (Ostracode). Etude morphologique et histologique. 1 Morphologie externe et système nerveux. La Cellule 51(1): 51–152.

  • Rosenfeld, A., 1979. Structure and secretion of the carapace in some living ostracodes. Lethaia 12: 353–360.

  • Rosenfeld, A., 1982. The secretion process of the ostracode carapace. In Bate, R. H., E. Robinson & L. M. Sheppard (eds), Fossil and Recent Ostracoda. Ellis Horwood Ltd.:12–24.

  • Sadekov, A. Y., S. M. Eggins & P. De Deckker, 2005. Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping. Geochemistry Geophysics Geosystems 6: Q12P06.

    Article  Google Scholar 

  • Schornikov, E. I., 1969. A new family of Ostracoda from the supralittoral zone of Kuril Islands. Russian Zoological Journal 48: 494–498. [in Russian].

    Google Scholar 

  • Sohn, I. G., 1958. Chemical constituents of ostracods; some applications to paleontology and paleoecology. Journal of Paleontology 32: 730–736.

    Google Scholar 

  • Sylvester-Bradley, P. C. & R. H. Benson, 1971. Terminology for surface features in ornate ostracods. Lethaia 4: 249–286.

    Article  Google Scholar 

  • Turpen, J. B. & R. W. Angell, 1971. Aspects of molting and calcification in the ostracod Heterocypris. Biological Bulletin 140: 331–338.

    Article  CAS  Google Scholar 

  • Van Morkhoven, F. P. C. M., 1962. Post-Palaeozoic Ostracoda. Their Morphology, Taxonomy, and Economic Use, vol 1. Elsevier Publishing Company: 204.

  • Wansard, G., 1996a. Quantification of paleotemperature changes during isotopic stage 2 in the La Draga continental sequence (NE Spain) based on the Mg/Ca ratio of freshwater ostracods. Quaternary Science Reviews 15: 237–245.

    Article  Google Scholar 

  • Wansard, G., 1996b. Nouvelle approche de la quantification des paléotemperatures à partir du rapport (Mg/Ca) des valves d’ostracodes lacustres. Comptes rendus de l’Académie des Sciences de Paris, série IIa 323: 493–500.

    CAS  Google Scholar 

  • Wansard, G., P. De Deckker & R. Juliá, 1998. Variability in ostracod partition coefficients D(Sr) and D(Mg). Implications for lacustrine palaeoenvironmental reconstructions. Chemical Geology 146: 39–54.

    Article  CAS  Google Scholar 

  • Xia, J., D. R. Engstrom & E. Iti, 1997. Geochemistry of ostracode calcite.2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni. Geochimica et Cosmochimica Acta 61: 383–391.

    Article  CAS  Google Scholar 

  • Yamada, S. & D. Keyser, 2010. Calcification of the marginal infold in podocopid ostracods. Hydrobiologia 638: 213–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Aleksey Sadekov who prepared some of the samples for microprobe analysis at the Research School of Earth Sciences, ANU and helped prepare material for ‘elemental mapping’. He also helped tabulate the data into maps. Charlotte Allen helped prepare the equipment for laser ablation profiles through some of the ostracod valve fragments and process the data. I am also grateful to Mrs Judith Shelley for going through a final draft of this paper and providing succinct comments. Thank you all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick De Deckker.

Additional information

Guest editors: Alison J. Smith, Emi Ito, B. Brandon Curry & Patrick De Deckker / Multidisciplinary aspects of aquatic science: the legacy of Rick Forester

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Deckker, P. Trace elemental distribution in ostracod valves. From solution ICPMS and laser ablation ICPMS to microprobe mapping: a tribute to Rick Forester. Hydrobiologia 786, 23–39 (2017). https://doi.org/10.1007/s10750-015-2534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2534-4

Keywords

Navigation