, Volume 768, Issue 1, pp 51–61 | Cite as

Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae)

  • M. G. GlonEmail author
  • E. R. Larson
  • K. L. Pangle
Primary Research Paper


Ecological applications of stable isotope analysis are dependent on knowing consumer-diet discrimination factors (Δ) and consumer metabolic turnover rates (m). We used an 80-day laboratory experiment to test for differences in the δ13C, δ15N and m of two species of crayfish (Orconectes rusticus and O. virilis) fed one of two diets (algae wafers and bloodworms). Over the course of the experiment, the δ13C and δ15N signatures of the crayfish approached equilibrium with those of their diets. We fit our data to a growth-based model and found δ13C, δ15N, and m to be largely indistinguishable between species, except in the case of δ15N and m of crayfish on the algae diet. We thus pooled parameters to calculate Δ13C (algae diet: 1.57‰ [95% confidence interval: 0.86–2.35]; bloodworm diet: 0.8‰ [0.14–1.55]) and Δ15N (bloodworm diet: 1.2‰ [0.32–2.11]), and used species-specific data to calculate Δ15N for the algae diet (O. rusticus: 2.54‰ [2.06–3.08]; O. virilis: 3.35‰ [2.53–4.51]). Our results provide values of stable isotope Δ and m for applications to crayfish, and offer a rare comparison of these values between two closely related species and to commonly used literature values.


Stable isotope analysis Food webs Invasive species Diet analysis Fractionation Half-life 



We thank Central Michigan University and Shedd Aquarium for providing funding. We also thank Matthew Cooper, James Student, and Daelyn Woolnough for allowing us to conduct the experiment using their lab space and equipment, Jonathan Benstead for early conversations on crayfish stable isotope discrimination factors, and two anonymous reviewers for their insightful comments on the manuscript. Mael Glon thanks Stanley and Barbara Adams for early inspiration in the study of crayfish.

Supplementary material

10750_2015_2527_MOESM1_ESM.docx (10 kb)
Supplementary material 1 (DOCX 10 kb)


  1. Bergman, D. A. & P. A. Moore, 2003. Field observations of intraspecific agonistic behavior of two crayfish species. Biological Bulletin 205: 26–35.PubMedCrossRefGoogle Scholar
  2. Boecklen, W. J., C. T. Yarnes, B. A. Cook & A. C. James, 2011. On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics 42: 411–440.CrossRefGoogle Scholar
  3. Bond, A. L. & A. W. Diamond, 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecological Application 21: 1017–1023.CrossRefGoogle Scholar
  4. Bosley, K. L., D. A. Witting, R. C. Chambers & S. C. Wainright, 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Marine Ecology Progress Series 236: 233–240.CrossRefGoogle Scholar
  5. Buchheister, A. & R. J. Latour, 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Canadian Journal of Fisheries and Aquatic Sciences 67: 445–461.CrossRefGoogle Scholar
  6. Carolan, J. V., D. Mazumder, C. Dimovski, R. Diocares & J. Twining, 2012. Biokinetics and discrimination factors for 13C and δ15N in the omnivorous freshwater crustacean, Cherax destructor. Marine Freshwater Research 63: 878–886.CrossRefGoogle Scholar
  7. Caut, S., E. Angulo & F. Courchamp, 2008. Discrimination factors (Δ15N and Δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology 22: 255–263.CrossRefGoogle Scholar
  8. Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.CrossRefGoogle Scholar
  9. Charlebois, P. M. & G. A. Lamberti, 1996. Invading crayfish in a Michigan stream: direct and indirect effects on periphyton and macroinvertebrates. Journal of the North American Benthological Society 15: 551–563.CrossRefGoogle Scholar
  10. Cherel, Y., K. A. Hobson, C. Guinet & C. Vanpe, 2007. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology 76: 826–836.PubMedCrossRefGoogle Scholar
  11. Cherel, Y., S. Ducatez, C. Fontaine, P. Richard & C. Guinet, 2008. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Marine Ecology Progress Series 370: 239–247.CrossRefGoogle Scholar
  12. Dekar, M. P., D. D. Magoulick & G. R. Huxel, 2009. Shifts in the trophic base of intermittent stream food webs. Hydrobiologia 635: 263–277.CrossRefGoogle Scholar
  13. del Rio, C. M., N. Wolf, S. A. Carleton & L. Z. Gannes, 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews of the Cambridge Philosophical Society 84: 91–111.PubMedCrossRefGoogle Scholar
  14. DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Et Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  15. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Et Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  16. Ercoli, F., T. J. Ruokonen, H. Hämäläinen & R. I. Jones, 2014. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes? Biological Invasions 16: 2025–2036.CrossRefGoogle Scholar
  17. Fantle, M. S., A. I. Dittel, S. M. Schwalm, C. E. Epifanio & M. L. Fogel, 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120: 416–426.CrossRefGoogle Scholar
  18. Fortino, K. & R. P. Creed Jr, 2006. Abiotic factors, competition or predation: what determines the distribution of young crayfish in a watershed? Hydrobiologia 575: 301–314.CrossRefGoogle Scholar
  19. Fry, B. & C. Arnold, 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54: 200–204.CrossRefGoogle Scholar
  20. Fry, B. & E. B. Sherr, 1984. Δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Sciences 27: 13–47.Google Scholar
  21. Hammond, K. S., J. W. Hollows, C. R. Townsend & P. M. Lokman, 2006. Effects of temperature and water calcium concentration on growth, survival and moulting of freshwater crayfish, Paranephrops zealandicus. Aquaculture 251: 271–279.CrossRefGoogle Scholar
  22. Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.CrossRefGoogle Scholar
  23. Hesslein, R. H., K. A. Hallard & P. Ramlal, 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50: 2071–2076.CrossRefGoogle Scholar
  24. Hilderbrand, G. V., S. D. Farley, C. T. Robbins, T. A. Hanley, K. Titus & C. Servheen, 1996. Use of stable isotopes to determine diets of living and extinct bears. Canadian Journal of Zoology 74: 2080–2088.CrossRefGoogle Scholar
  25. Hill, A. M., D. M. Sinars & D. M. Lodge, 1993. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality. Oecologia 94: 303–306.CrossRefGoogle Scholar
  26. Hobson, K. A. & R. G. Clark, 1992. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. The Condor 94: 181–188.CrossRefGoogle Scholar
  27. Hobson, K. A., R. T. Alisauskas & R. G. Clark, 1993. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. The Condor 95: 388–394.CrossRefGoogle Scholar
  28. Jackson, M. C., T. Jones, M. Milligan, D. Sheath, J. Taylor, A. Ellis, J. England & J. Grey, 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biology 59: 1123–1135.CrossRefGoogle Scholar
  29. Kreps, T.A., E. R. Larson & D. M. Lodge, 2016. Do invasive rusty crayfish (Orconectes rusticus) decouple benthic and pelagic energy flows in lake food webs? Freshwater Science (in press).Google Scholar
  30. Lodge, D. M., C. A. Taylor, D. M. Holdich & J. Skurdal, 2000. Reducing impacts of exotic crayfish introductions. Fisheries 25: 21–23.CrossRefGoogle Scholar
  31. McCarthy, J. M., C. L. Hein, J. D. Olden & M. J. Vander Zanden, 2006. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology 51: 224–235.CrossRefGoogle Scholar
  32. McClellan, C. M., J. Braun-McNeill, L. Avens, B. P. Wallace & A. J. Read, 2010. Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. Journal of Experimental Marine Biology and Ecology 387: 44–51.CrossRefGoogle Scholar
  33. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  34. Momot, W. T., 1995. Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries Science 3: 33–63.CrossRefGoogle Scholar
  35. Momot, W. T., H. Gowing & P. D. Jones, 1978. The dynamics of crayfish and their role in ecosystems. American Midland Naturalist 99: 10–35.CrossRefGoogle Scholar
  36. Moore, J. W. & B. X. Semmens, 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11: 470–480.PubMedCrossRefGoogle Scholar
  37. Mundahl, N. D., 1989. Seasonal and diel changes in thermal tolerance of the crayfish Orconectes rusticus, with evidence for behavioral thermoregulation. Journal of the North American Benthological Society 8: 173–179.CrossRefGoogle Scholar
  38. Newsome, S. D., M. T. Tinker, D. H. Monson, O. T. Oftedal, K. Ralls, M. M. Staedler, M. L. Fogel & J. A. Estes, 2009. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90: 961–974.PubMedCrossRefGoogle Scholar
  39. Nilsson, E., C. T. Solomon, K. A. Wilson & T. V. Willis, 2012. Effects of an invasive crayfish on trophic relationships in north-temperate lake food webs. Freshwater Biology 57: 10–23.CrossRefGoogle Scholar
  40. Olsson, K., P. Nyström, P. Stenroth, E. Nilsson, M. Svensson & W. Granéli, 2008. The influence of food quality and availability on trophic position, carbon signature, and growth rate of an omnivorous crayfish. Canadian Journal of Fisheries and Aquatic Sciences 65: 2293–2304.CrossRefGoogle Scholar
  41. Olsson, K., P. Stenroth, P. Nyström & W. Granéli, 2009. Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshwater Biology 54: 1731–1740.CrossRefGoogle Scholar
  42. Peters, J. A. & D. M. Lodge, 2013. Habitat, predation, and coexistence between invasive and native crayfishes: prioritizing lakes for invasion prevention. Biological Invasions 15: 2489–2502.CrossRefGoogle Scholar
  43. Peters, J. A., M. J. Cooper, S. M. Creque, M. S. Kornis, J. T. Maxted, W. L. Perry, F. W. Schueler, T. P. Simon, C. A. Taylor, R. F. Thoma, D. G. Uzarski & D. M. Lodge, 2014. Historical changes and current status of crayfish diversity and distribution in the Laurentian Great Lakes. Journal of Great Lakes Research 40: 35–46.CrossRefGoogle Scholar
  44. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  45. Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.PubMedCrossRefGoogle Scholar
  46. R Core Team, 2014. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  47. Reynolds, J., C. Souty-Grosset & A. Richardson, 2013. Ecological roles of crayfish in freshwater and terrestrial habitats. Freshwater Crayfish 19: 197–218.Google Scholar
  48. Ritz, C. & J. C. Streibig, 2008. Model reduction and parameter models. In Gentleman, R., K. Hornik & G. Parmigiani (eds), Nonlinear Regression with R. Springer Science, New York: 114–118.Google Scholar
  49. Rosenblatt, A. E. & M. R. Heithaus, 2013. Slow isotope turnover rates and low discrimination values in the American alligator: implications for interpretation of ectotherm stable isotope data. Physiological and Biochemical Zoology 86: 137–148.PubMedCrossRefGoogle Scholar
  50. Roth, B. M., C. L. Hein & M. J. Vander Zanden, 2006. Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes rusticus) in lake littoral zones. Canadian Journal of Fisheries and Aquatic Sciences 63: 335–344.CrossRefGoogle Scholar
  51. Rudnick, D. & V. Resh, 2005. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshwater Biology 50: 1323–1336.CrossRefGoogle Scholar
  52. Ruokonen, T. J., J. Karjalainen, M. Kiljunen, M. Pursiainen & H. Hämäläinen, 2011. Do introduced crayfish affect benthic fish in stony littoral habitats of large boreal lakes? Biological Invasions 14: 813–825.CrossRefGoogle Scholar
  53. Solomon, C. T., S. R. Carpenter, M. K. Clayton, J. J. Cole, J. J. Coloso, M. L. Pace, M. J. Vander Zanden & B. C. Weidel, 2011. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92: 1115–1125.PubMedCrossRefGoogle Scholar
  54. Stenroth, P., N. Holmqvist, P. Nyström, O. Berglund, P. Larsson & W. Granéli, 2006. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Canadian Journal of Fisheries and Aquatic Sciences 63: 821–831.CrossRefGoogle Scholar
  55. Thomas, S. M. & T. W. Crowther, 2014. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. Journal of Animal Ecology 84: 861–870.CrossRefGoogle Scholar
  56. Twardochleb, L. A., J. D. Olden & E. R. Larson, 2013. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science 32: 1367–1382.CrossRefGoogle Scholar
  57. Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  58. Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  59. Vander Zanden, M. J., G. Cabana & J. B. Rasmussen, 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54: 1142–1158.CrossRefGoogle Scholar
  60. Vander Zanden, M. J., J. M. Casselman & J. B. Rasmussen, 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401: 464–467.CrossRefGoogle Scholar
  61. Venarsky, M. P., B. M. Huntsman, A. D. Huryn, J. P. Benstead & B. R. Kuhajda, 2014. Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia 176: 859–869.PubMedCrossRefGoogle Scholar
  62. Webb, S. C., R. E. M. Hedges & S. J. Simpson, 1998. Diet quality influences the δ13C and δ15N of locusts and their biochemical components. The Journal of Experimental Biology 201: 2903–2911.PubMedGoogle Scholar
  63. Whitledge, G. W. & C. F. Rabeni, 1997. Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Canadian Journal of Fisheries Aquatic Sciences 54: 2555–2563.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of BiologyCentral Michigan UniversityMount PleasantUSA
  2. 2.Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoUSA
  3. 3.Environmental Change InitiativeUniversity of Notre DameSouth BendUSA
  4. 4.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations