Skip to main content

Invasive Salix fragilis: altered metabolic patterns in Australian streams

Abstract

Willows (Salix spp.) are listed as a weed of national significance in Australia. Despite this recognition, functional effects of willows on streams compared to native species are largely unknown. Leaves supply carbon to instream food webs, but may also act as surfaces for biofilm, and thus can contribute in different ways to stream metabolism. Salix fragilis L. and Eucalyptus camaldulensis Dehnh. leaves that had been colonised by biofilms were placed into chambers in laboratory conditions, and metabolic rates were measured. Gross Primary Production (GPP) of biofilms on E. camaldulensis leaves after 10 days of incubation were significantly greater than biofilms on S. fragilis leaves. S. fragilis leaves displayed greater rates of microbial decomposition per leaf mass. Autotrophic biomass was one hundred fold greater on E. camaldulensis leaves. The biofilm on E. camaldulensis leaves is likely to support a greater population of grazers, compared to S. fragilis. The alien S. fragilis leaves, therefore, are fuelling a different component of the food web to endemic E. camaldulensis leaves. Endemic Eucalyptus spp. leaves play an important role in temperate Australian streams as a substrate for autotrophic growth and provide a year round pathway for carbon to reach secondary invertebrate consumers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74: 93–102.

    Article  Google Scholar 

  • Borchardt, M., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 183–227.

    Chapter  Google Scholar 

  • Bott, T. L., J. T. Brock, A. Baatrup-Pedersen, P. A. Chambers, W. K. Dodds, K. T. Himbeault, J. R. Lawrence, D. Planas, E. Snyder & G. M. Wolfaardt, 1997. An evaluation of techniques for measuring periphyton metabolism in chambers. Canadian Journal of Fisheries and Aquatic Sciences 54(3): 715–725.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & M. Winning, 2003. Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48(4): 619–635.

    Article  Google Scholar 

  • Campbell, I. C., K. R. James, B. T. Hart & A. Devereaux, 1992. Allochthonous coarse particulate organic material in forest and pasture reaches of two south-eastern Australian streams I. Litter accession. Freshwater Biology 27(3): 341–352.

    Article  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1996. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333(2): 79–85.

    Article  CAS  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37(3): 163–172.

    Article  PubMed  Google Scholar 

  • Chauvet, E., 1987. Changes in the chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia 148(1): 35–44.

    Article  CAS  Google Scholar 

  • Chergui, H., L. Haddy, M. Markaoui & E. Pattee, 1997. Impact of leaf litter leachates on water oxygen levels and gastropod survival. Acta Oecologica-International Journal of Ecology 18: 531–542.

    Article  Google Scholar 

  • Clapcott, J. E. & L. A. Barmuta, 2010. Metabolic patch dynamics in small headwater streams: exploring spatial and temporal variability in benthic processes. Freshwater Biology 55(4): 806–824.

    Article  CAS  Google Scholar 

  • Collier, K. & M. Winterbourn, 1986. Processing of willow leaves in two suburban streams in Chrisrtchurch, New Zealand. New Zealand Journal of Marine and Freshwater Research 20(4): 575–582.

    Article  Google Scholar 

  • Cork, S. J. & L. Pahl, 1984. The Possible Influence of Nutritional Factors on Diet and Habitat Selection by the Ringtail Possum (Pseudocheirus peregrinus). Possums and gliders Chipping Norton Inc, Sydney: 269–276.

    Google Scholar 

  • Côtté, B. & J. O. Dawson, 1986. Autumnal changes in total nitrogen, salt-extractable proteins and amino acids in leaves and adjacent bark of black alder, eastern cottonwood and white basswood. Physiologia Plantarum 67(1): 102–108.

    Article  Google Scholar 

  • Cremer, K., C. Kraayenoord, N. Parker & S. Streatfield, 1995. Willows spreading by seed-implications for Australian river management. Australian Journal of Soil and Water Conservation 8(4): 18–27.

    Google Scholar 

  • Cremer, K. W., 2003. Introduced willows can become invasive pests in Australia. Biodiversity 4(4): 17–24.

    Article  Google Scholar 

  • Cuddington, K. & A. Hastings, 2004. Invasive engineers. Ecological Modelling 178(3): 335–347.

    Article  Google Scholar 

  • Ehrenfeld, J. G., 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics 41(1): 59–80.

    Article  Google Scholar 

  • Elwood, J. W., J. D. Newbold, A. F. Trimble & R. W. Stark, 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62(1): 146–158.

    Article  CAS  Google Scholar 

  • Fellows, C., J. Clapcott, J. Udy, S. Bunn, B. Harch, M. Smith & P. Davies, 2006. Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 572(1): 71–87.

    Article  Google Scholar 

  • Francoeur, S. N., B. J. Biggs, R. A. Smith & R. L. Lowe, 1999. Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. Journal of the North American Benthological Society 18(2): 242–260.

    Article  Google Scholar 

  • Frankenberg, J., 1995. Willows: the species, their biology and control. Willows, Weeds and Native Fish (Ed: Anon).

  • Gaertner, M., A. Den Breeyen, Cang Hui & D. M. Richardson, 2009. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Progress in Physical Geography 33(3): 319–338.

    Article  Google Scholar 

  • Gessner, M. O., 2005. Ergosterol as a Measure of Fungal Biomass Methods to Study Litter Decomposition. Springer, Berlin: 189–195.

    Book  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology 59(2): 502–507.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.

    Article  Google Scholar 

  • Glazebrook, H. S. & A. I. Robertson, 1999. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Australian Journal of Ecology 24(6): 625–635.

    Article  Google Scholar 

  • Gordon, D. R., 1998. Effects of invasive non-indigenous plant species on ecosystem processes: lessons from Florida. Ecological Applications 8(4): 975–989.

    Article  Google Scholar 

  • Grace, M. R. & S. J. Imberger, 2006. Stream Metabolism: Performing & Interpreting Measurements. Water Studies Centre Monash University, Murray Darling Basin Commission and New South Wales Department of Environment and Climate Change: 204.

  • Gregory, S. V., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. Bioscience 41: 541–551.

    Article  Google Scholar 

  • Harris, C. W., 2012. Dissolved Organic Nitrogen in the Ovens River. Honours Dissertation, La Trobe University.

  • ISO, 1994. Water Quality – Measurement for Biological Parameters-Spectrophotometric Determination of Chlorophyll-a Concentration. International Organisation for Standardization, Geneva.

    Google Scholar 

  • Janssen, M. A. & K. F. Walker, 1999. Processing of riparian and wetland plant litter in the River Murray, South Australia. Hydrobiologia 411: 53–64.

    Article  Google Scholar 

  • Jones, L., R. Haugland & V. Singer, 1996. New fluorescent assay for detection and quantitation of nanogram levels of proteins in solution. In: FASEB Journal, 1996. Vol 10. Federation Amer Soc Exp Biol 9650 Rockville Pike, Bethesda: 2954–2954.

  • Kerr, J. L., D. S. Baldwin, M. J. Tobin, L. Puskar, P. Kappen, G. N. Rees & E. Silvester, 2013. High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi. PLoS ONE 8(4): e60857.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Lake, P. S., 1982. Ecology of macroinvertebrates in australian upland streams - a review of current knowledge. Bulletin of the Society for Limnology 8: 1–15.

    Google Scholar 

  • Legssyer, B. H., H. Chergui & A. Maamri, 2003. Invertebrate dynamics during the decomposition of dry and fresh willow leaves in Oued Zegzel (Eastern Morocco). Annales De Limnologie-International Journal of Limnology 39: 27–33.

    Article  Google Scholar 

  • Lester, P. J., S. F. Mitchell & D. Scott, 1994. Willow leaf and periphyton chemical-composition, and the feeding preferences of Olinga-Feredayi (Trichoptera, Conoesucidae). New Zealand Journal of Marine and Freshwater Research 28: 13–18.

    Article  CAS  Google Scholar 

  • Liao, C., R. Peng, Y. Luo, X. Zhou, X. Wu, C. Fang, J. Chen & B. Li, 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist 177(3): 706–714.

    Article  CAS  PubMed  Google Scholar 

  • Meikle, R. D. & V. Gordon, 1984. Willows and Poplars of Great Britain and Ireland. Botanical Society of the British Isles, London.

    Google Scholar 

  • Mulholland, P., 1996. Role in Nutrient Cycling in Streams. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 609–639.

    Google Scholar 

  • Naiman, R. J., J. M. Melillo & J. E. Hobbie, 1986. Ecosystem alteration of boreal forest streams by Beaver (Castor canadensis). Ecology 67(5): 1254–1269.

    Article  Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing waters. Limnology and Oceanography 1(2): 102–117.

    Article  Google Scholar 

  • Parkyn, S. M. & M. J. Winterbourn, 1997. Leaf breakdown and colonisation by invertebrates in a headwater stream: comparisons of native and introduced tree species. New Zealand Journal of Marine and Freshwater Research 31: 301–312.

    Article  Google Scholar 

  • Pidgeon, R. J. W. & S. C. Cairns, 1981. Decomposition and colonisation by invertebrates of native and exotic leaf material in a small stream in New England (Australia). Hydrobiologia 77: 113–127.

    Article  Google Scholar 

  • Pidgeon, R. W., 1978. Energy Flow in a Small Stream Community: an Evaluation of the Effects of Different Vegetation. Ph.D. Dissertation, University of New England.

  • Pope, L., I. Rutherfurd, P. Price & S. Lovett, 2006. Controlling Willows Along Australian Rivers. River Management Technical Guideline No. 6. Land & Water Australia, Canberra.

    Google Scholar 

  • Pringle, C., P. Paaby-Hansen, P. Vaux & C. Goldman, 1986. In situ nutrient assays of periphyton growth in a lowland Costa Rican stream. Hydrobiologia 134(3): 207–213.

    Article  CAS  Google Scholar 

  • Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71(3): 905–920.

    Article  Google Scholar 

  • Rasband, W. S., 2003. Image J. National Institute of Health, Bethseda.

    Google Scholar 

  • Raskin, I., 1992. Role of salicylic acid in plants. Annual Review of Plant Biology 43(1): 439–463.

    Article  CAS  Google Scholar 

  • Read, M. & L. Barmuta, 1999. Comparisons of benthic communities adjacent to riparian native eucalypt and introduced willow vegetation. Freshwater Biology 42: 359–374.

    Article  Google Scholar 

  • Ruuhola, T. M. & M.-R. K. Julkunen-Tiitto, 2000. Salicylates of intact Salix myrsinifolia plantlets do not undergo rapid metabolic turnover. Plant Physiology 122(3): 895–906.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Sax, D. F., J. J. Stachowicz, J. H. Brown, J. F. Bruno, M. N. Dawson, S. D. Gaines, R. K. Grosberg, A. Hastings, R. D. Holt, M. M. Mayfield, M. I. O’Connor & W. R. Rice, 2007. Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution 22(9): 465–471.

    Article  Google Scholar 

  • Schulze, D. & K. Walker, 1997. Riparian eucalypts and willows and their significance for aquatic invertebrates in the River Murray, South Australia. Regulated Rivers-Research & Management 13: 557–577.

    Article  Google Scholar 

  • Serra, M., R. Albariño & V. Díaz Villanueva, 2013. Invasive Salix fragilis alters benthic invertebrate communities and litter decomposition in northern Patagonian streams. Hydrobiologia 701(1): 173–188.

    Article  Google Scholar 

  • Shettel, N. L. & N. E. Balke, 1983. Plant growth response to several allelopathic chemicals. Weed Science 31(3): 293–298.

    CAS  Google Scholar 

  • Smith, T. & B. Starr, 1999. Willows-friend or foe? An historical perspective. In: Second Australian Stream Management Conference, Adelaide, 1999.

  • Strayer, D. L., V. T. Eviner, J. M. Jeschke & M. L. Pace, 2006. Understanding the long-term effects of species invasions. Trends in Ecology & Evolution 21(11): 645–651.

    Article  Google Scholar 

  • Suter, S. G., G. N. Rees, G. O. Watson, P. J. Suter & E. Silvester, 2011. Decomposition of native leaf litter by aquatic hyphomycetes in an alpine stream. Marine and Freshwater Research 62(7): 841–849.

    Article  CAS  Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48(6): 1031–1049.

    Article  CAS  Google Scholar 

  • Vilà, M., J. L. Espinar, M. Hejda, P. E. Hulme, V. Jarošík, J. L. Maron, J. Pergl, U. Schaffner, Y. Sun & P. Pyšek, 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14(7): 702–708.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., L. R. Walker, L. D. Whiteaker, D. Mueller-Dombois & P. A. Matson, 1987. Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238(4828): 802–804.

    Article  CAS  PubMed  Google Scholar 

  • Walker, K. & M. Thoms, 1993. Environmental effects of flow regulation on the lower River Murray Australia. Regulated Rivers-Research & Management 8: 103–119.

    Article  Google Scholar 

  • Yeates, L. V. & L. A. Barmuta, 1999. The effects of willow and eucalypt leaves on feeding preference and growth of some Australia aquatic macroinvertebrates. Australian Journal of Ecology 24: 593–598.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly funded by the North East Catchment Management Authority, Wodonga, VIC, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. McInerney.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McInerney, P.J., Rees, G.N., Gawne, B. et al. Invasive Salix fragilis: altered metabolic patterns in Australian streams. Hydrobiologia 767, 267–277 (2016). https://doi.org/10.1007/s10750-015-2507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2507-7

Keywords

  • Invasive
  • Leaves
  • Willows
  • Production
  • Respiration
  • Freshwater