, Volume 767, Issue 1, pp 27–35 | Cite as

Development time of male and female rotifers with sexual size dimorphism

  • Xu-Wang Yin
  • Bing-Bing Tan
  • Yan-Chun Zhou
  • Xiao-Chun Li
  • Wei LiuEmail author
Primary Research Paper


Dwarfism in males is a common phenomenon in planktonic monogonont rotifers. Considering the small body size of males, some studies suggested that the development time of male rotifers is faster than that of females. However, empirical studies associated with such a speculation are scarce. In this study, we used two common rotifer species, Brachionus calyciflorus and Brachionus plicatilis (each with two geographical populations), to test the hypothesis that the development time of dwarf males is significantly shorter than that of females. Results showed that male eggs (embryos) were deposited much faster than female eggs (embryos) in both Brachionus species. However, the embryonic development time of these small male eggs (embryos) was longer than that of large female eggs (embryos). As a result, males needed significantly longer total development time than females. The total development time of males was 2–3 h longer than that of females in both Brachionus species. Male-producing and female-producing females in the two Brachionus species did not show any difference in development time. Because sexual reproduction begins at high population densities in both species, postponement of development in males will be advantageous by decreasing mating costs in male rotifers.


Cost of sex Dwarf male Haploid Mictic female Sexual reproduction 



We thank several anonymous reviewers for constructive comments that improve our manuscript greatly. We also thank Booth M.J. for linguistic improvements. This study was supported by the National Natural Science Foundation of China (31000218; 41206110), the Program for Liaoning Excellent Talents in University (LR2015009), and the Natural Science Foundation of Dalian (2012J21DW013).

Supplementary material

10750_2015_2472_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)


  1. Aparici, E., M. J. Carmona & M. Serra, 1998. Sex allocation in haplodiploid cyclical parthenogens with density-dependent proportion of males. The American Naturalist 152: 652–657.CrossRefPubMedGoogle Scholar
  2. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of the plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  3. Carmona, M. J. & M. Serra, 1991. Comparative total protein and demographic patterns of mictic and amictic female rotifers. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 2754–2759.Google Scholar
  4. Dimas-Flores, N., M. Serra & M. J. Carmona, 2013. Does genetic diversity reduce intraspecific competition in rotifer populations? Hydrobiologia 705: 43–54.CrossRefGoogle Scholar
  5. Gilbert, J. J., 1988. Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69: 1826–1838.CrossRefGoogle Scholar
  6. Gilbert, J. J., 1993. Rotifera. In Adiyodi, K. G. & R. G. Adiyodi (eds), Reproductive Biology of Invertebrates. Vol. VI, part A. Asexual Propagation and Reproductive Strategies. Oxford and IBH Publishing Company, New Delhi: 231–263.Google Scholar
  7. Gilbert, J. J., 2003. Specificity of crowding response that induces sexuality in the rotifer Brachionus. Limnology and Oceanography 48: 1297–1303.CrossRefGoogle Scholar
  8. Gilbert, J. J., 2007. Timing of diapause in monogonont rotifers: mechanism and strategies. In Alekseev, V. R., B. T. De Stasio & J. J. Gilbert (eds), Diapause in Aquatic Invertebrate. Springer Science + Business Media, Dordrecht: 11–27.CrossRefGoogle Scholar
  9. Gillooly, J. F., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241–251.CrossRefGoogle Scholar
  10. Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage & J. H. Brown, 2002. Effects of size and temperature on developmental time. Nature 417: 70–73.CrossRefPubMedGoogle Scholar
  11. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.CrossRefGoogle Scholar
  12. Gómez, A. & M. Serra, 1996. Mate choice in male Brachionus plicatilis rotifers. Functional Ecology 10: 681–687.CrossRefGoogle Scholar
  13. Gómez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002. Speciation in ancient cryptic complexes, evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.CrossRefPubMedGoogle Scholar
  14. Henery, C. C. & M. H. Kaufman, 1992. Cleavage rate of haploid and diploid parthenogenetic mouse embryos during the preimplantation period. Molecular Reproduction and Development 31: 258–263.CrossRefPubMedGoogle Scholar
  15. Hildrew, A. G., D. G. Raffaelli & R. Edmonds-Brown, 2007. Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, New York.CrossRefGoogle Scholar
  16. Jack, J. D. & J. J. Gilbert, 1993. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshwater Biology 29: 19–29.CrossRefGoogle Scholar
  17. Lourenço, S. O., U. M. L. Marquez, J. Mancini-Filho, E. Barbarino & E. Aidar, 1997. Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture 148: 153–168.CrossRefGoogle Scholar
  18. Ricci, C. & G. Melone, 1998. Dwarf males in monogonont rotifers. Aquatic Ecology 32: 361–365.CrossRefGoogle Scholar
  19. Sarma, S. S. S., R. A. L. Resendiz & S. Nandini, 2011. Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia 622: 179–187.CrossRefGoogle Scholar
  20. Savage, V. M., J. F. Gillooly, J. H. Brown, G. B. West & E. L. Charnov, 2004. Effects of body size and temperature on population growth. The American Naturalist 163: 429–441.CrossRefPubMedGoogle Scholar
  21. Serra, M. & C. E. King, 1999. Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. Journal of Evolutionary Biology 12: 263–271.CrossRefGoogle Scholar
  22. Serra, M. & T. W. Snell, 1998. Why are male rotifers dwarf? Trends in Ecology and Evolution 13: 360–361.CrossRefPubMedGoogle Scholar
  23. Serra, M., T. W. Snell & C. E. King, 2004. The timing of sex in cyclically parthenogenetic rotifers. In Moya, A. & E. Font (eds), Evolution: From Molecules to Ecosystems. Oxford University Press, New York: 135–146.Google Scholar
  24. Serra, M., T. W. Snell & J. J. Gilbert, 2005. Delayed mixis in rotifers: an adaptive response to the effects of density-dependent sex on population growth. Journal of Plankton Research 27: 37–45.CrossRefGoogle Scholar
  25. Serra, M., E. Aparici & M. J. Carmona, 2008. When to be sexual: sex allocation theory and population density-dependent induction of sex in cyclical parthenogens. Journal of Plankton Research 30: 1207–1214.CrossRefGoogle Scholar
  26. Snell, T. W. & F. H. Hoff, 1987. Fertilization and male fertility in the rotifer Brachionus plicatilis. Hydrobiologia 147: 329–334.CrossRefGoogle Scholar
  27. Snell, T. W., J. M. Kubanek, W. E. Carter, A. B. Payne, J. Kim, M. Hicks & C. P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.CrossRefGoogle Scholar
  28. Snell, T. W., J. Kim, E. Zelaya & R. Resop, 2007. Mate choice and sexual conflict in Brachionus plicatilis (Rotifera). Hydrobiologia 593: 151–157.CrossRefGoogle Scholar
  29. Stelzer, C. P., 2008. Obligate asex in a rotifer and the role of sexual signals. Journal of Evolutionary Biology 21: 287–293.PubMedGoogle Scholar
  30. Stelzer, C. P. & T. W. Snell, 2003. Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue. Limnology and Oceanography 48: 939–943.CrossRefGoogle Scholar
  31. Stemberger, R. S. & J. J. Gilbert, 1985. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159.CrossRefGoogle Scholar
  32. Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181–187.CrossRefGoogle Scholar
  33. Vollrath, F., 1998. Dwarf male. Trends in Ecology and Evolution 13: 159–163.CrossRefPubMedGoogle Scholar
  34. Yin, X. W. & C. J. Niu, 2008. Predatory rotifer Asplanchna brightwellii mediated competition outcome between Brachionus calyciflorus and Brachionus patulus (Rotifera). Hydrobiologia 610: 131–138.CrossRefGoogle Scholar
  35. Yin, X. W. & W. Zhao, 2008. Studies on life history characteristics of Brachionus plicatilis O. F. Müller (Rotifera) in relation to temperature, salinity and food algae. Aquatic Ecology 42: 165–176.CrossRefGoogle Scholar
  36. Yin, X. W., P. F. Liu, S. S. Zhu & X. X. Chen, 2010. Food selectivity of herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae. Hydrobiologia 655: 15–23.CrossRefGoogle Scholar
  37. Yin, X. W., W. W. Min, H. J. Lin & W. Chen, 2013. Population dynamics, protein content, and lipid composition of Brachionus plicatilis fed artificial macroalgal detritus and Nannochloropsis sp. diets. Aquaculture 380(383): 62–69.CrossRefGoogle Scholar
  38. Yin, X. W., Y. C. Zhou, X. C. Li & W. X. Li, 2015. Reduced investment in sex as a cost of inducible defence in Brachionus calyciflorus (Rotifera). Freshwater Biology 60: 89–100.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xu-Wang Yin
    • 1
  • Bing-Bing Tan
    • 1
  • Yan-Chun Zhou
    • 1
  • Xiao-Chun Li
    • 1
  • Wei Liu
    • 2
    Email author
  1. 1.Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life ScienceDalian Ocean UniversityDalianChina
  2. 2.The First Institute of Oceanography, SOAQingdaoChina

Personalised recommendations