Skip to main content
Log in

Biogenic calcareous growth on the ribbed mussel Aulacomya atra (Bivalvia: Mytilidae) favours polydorid boring (Polychaeta: Spionidae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Shells of the ribbed mussel Aulacomya atra from the Patagonian gulfs of San Matías and San José (Argentina) are commonly bored by polydorids and covered by serpulids and crustose coralline algae. As the co-occurring mussel Mytilus edulis is neither bored by polydorids nor covered by coralline algae, we hypothesize that early or previous calcareous growth would favour larval settlement and boring by polydorids. Generalized Linear Model analyses showed that polydorid boring is indeed positively correlated with the abundance of serpulids and crustose coralline alga. Infestation by polydorids is higher in larger, older ribbed mussels due to their correspondingly higher available area for larval settlement. Increasing polydorid infestation adversely affects the condition index of A. atra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agresti, A., 2007. An Introduction to Categorical Data Analysis, 2nd Edition. New York: Wiley: 400 pp.

  • Akaike, H., 1978. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics 30: 9–14.

    Article  Google Scholar 

  • Amoroso, R. O. & D. A. Gagliardini, 2010. Inferring complex hydrographic processes using remote-sensed images: turbulent fluxes in the Patagonian gulfs and implications for scallop metapopulation dynamics. Journal of Coastal Research 26: 320–333.

    Article  Google Scholar 

  • Amoroso, R. O., A. M. Parma, J. M. Orensanz & D. A. Gagliardini, 2011. Zooming the macroscope: medium-resolution remote sensing as a framework for the assessment of a small-scale fishery. ICES Journal of Marine Science 68: 696–706.

    Article  Google Scholar 

  • Barton, K., 2009. MuMIn: Multi-model Inference. R Package, Version 0.12.2. http://r-forge.r-project.org/projects/mumin.

  • Blake, J. A., 1975. Phylum Annelida: Class Polychaeta. In Smithand, R. I. & J. A. Carlton (eds), Light’s Manual, Intertidal Invertebrates of the Central California Coast. University of California Press, Berkeley: 151–243.

    Google Scholar 

  • Blake, J. A. & J. W. Evans, 1973. Polydora and related genera as borers in mollusc shells and other calcareous substrates. Veliger 15: 235–249.

    Google Scholar 

  • Carraro, J. L., G. S. Rupp, B. Mothes, C. Lerner & N. L. Würdig, 2012. Characterization of the fouling community of macroinvertebrates on the scallop Nodipecten nodosus (Mollusca, Pectinidae) farmed in Santa Catarina, Brazil. Ciencias Marinas 38: 577–588.

    Article  Google Scholar 

  • Ciocco, N. F., M. L. Lasta & C. S. Bremec, 1998. Pesquerías de bivalvos: mejillón, vieiras (tehuelche y patagónica) y otras especies. In Boschi, E. E. (ed.), El Mar Argentino y sus recursos pesqueros. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata: 143–166.

    Google Scholar 

  • Ciocco, N. F., M. L. Lasta, M. Narvarte, C. Bremec, E. Bogazzi, J. Valero & J. M. Orensanz, 2006. Argentina. In Shumway, S. E. & G. J. Parsons (eds), Scallops: Biology, Ecology and Aquaculture, Vol. 26. Elsevier, Amsterdam: 1251–1292.

    Chapter  Google Scholar 

  • Cremonte, F., 2011. Enfermedades de moluscos bivalvos de interés comercial causadas por metazoos. In Figueras, A. & B. Novoa (eds), Enfermedades de moluscos bivalvos de interés en Acuicultura. Observatorio Español de Acuicultura, Madrid: 331–385.

    Google Scholar 

  • Day, R. L. & J. A. Blake, 1979. Reproduction and larval development of Polydora giardi Mesnil (Polychaeta: Spionidae). Biology Bulletin 156: 20–30.

    Article  Google Scholar 

  • Diez, M. E., V. I. Radashevsky, J. M. Orensanz & F. Cremonte, 2011. Spionid polychaetes (Annelida: Spionidae) boring into shells of molluscs of commercial interest in northern Patagonia, Argentina. Italian Journal of Zoology 78: 497–504.

    Article  Google Scholar 

  • Diez, M. E., N. Vázquez, D. Urteaga & F. Cremonte, 2014. Species associations and environmental factors influence borers’ activity on Ostrea puelchana of the northern Patagonian coast. Journal of Molluscan Studies 80: 430–434.

    Article  Google Scholar 

  • Gee, J. M., 1965. Chemical stimulation of settlement in larvae of Spirorbis rupestris (Serpulidae). Animal Behaviour 13: 181–186.

    Article  Google Scholar 

  • Gelman, S., Y.-S. Su, M. Yajima, J. Hill, M.G. Pittau, J. Kerman, T. Zheng & V. Dorie, 2009. Arm: Data Analysis Using Regression and Multilevel Hierarchical Models. R package, version 9.01. http://CRAN.R-project.org/package=arm.

  • Grueber, C. E., S. Nakagawa, R. J. Laws & I. G. Jamieson, 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24: 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, J. C., 1970. Commensal activity as a function of age in two species of California abalones (Mollusca: Gastropoda). Veliger 13: 90–94.

    Google Scholar 

  • Hartman, O., 1969. Atlas of the sedentariate polychaetous annelids from California. Allan Hancock Foundation, University of Southern California: 812 pp

  • Kent, R. M. L., 1979. The influence of heavy infestations of Polydora ciliata on the flesh content of Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom 59: 289–297.

    Article  Google Scholar 

  • Lau, S. C. K. & P. Y. Qian, 2001. Larval settlement in the serpulid polychaete Hydroides elegans in response to the bacterial films: an investigation of the nature of putative larval settlement cue. Marine Biology 138: 321–328.

    Article  Google Scholar 

  • Lucas, A. & P. G. Benninger, 1985. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44: 187–200.

    Article  Google Scholar 

  • Martin, D. & T. A. Britayev, 1998. Symbiotic polychaetes: review of known species. Oceanography and Marine Biology: An Annual Review 36: 217–340.

    Google Scholar 

  • McDiarmid, H., R. Day & R. Wilson, 2004. The ecology of polychaetes that infest abalone shells in Victoria, Australia. Journal of Shellfish Research 23: 1179–1188.

    Google Scholar 

  • Morse, A. N. C. & D. E. Morse, 1984. Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae. Journal of Experimental Marine Biology and Ecology 75: 191–215.

    Article  CAS  Google Scholar 

  • Neo, M. L., P. A. Todd, S. L.-M. Teo & L. M. Chou, 2009. Can artificial substrates enriched with crustose coralline algae enhance larval settlement and recruitment in the fluted giant clam (Tridacna squamosa)? Hydrobiologia 625: 83–90.

    Article  Google Scholar 

  • Orrhage, L., 1969. On the shell growth of Littorina littorea (Linne) (Prosobranchiata, Gasteropoda) and the occurrence of Polydora ciliata (Johnston) (Polychaeta Sedentaria). Zoologiska bidrag från Uppsala 38: 137–153.

    Google Scholar 

  • Pearce, C. M. & R. E. Scheibling, 1988. Larval settlement in the green sea urchin. Strongylocentrotus droebachiensis. American Zoologist 28: 365.

    Google Scholar 

  • R Development Core Team 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Radashevsky, V. I., P. C. Lana & R. C. Nalesso, 2006. Morphology and biology of Polydora species (Polychaeta: Spionidae) boring into oyster shells in South America, with the description of a new species. Zootaxa 1353: 1–37.

    Google Scholar 

  • Roberts, R. D., M. F. Barker & P. Mladenov, 2010. Is settlement of Haliotis iris larvae on coralline algae triggered by the alga or its surface biofilm? Journal of Shellfish Research 29: 671–678.

    Article  Google Scholar 

  • Rodriguez, R., F. P. Ojeda & N. I. Inestrosa, 1993. Review: settlement of benthic marine invertebrates. Marine Ecology Progress Series 97: 193–207.

    Article  Google Scholar 

  • Rowley, R., 1989. Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes? Marine Biology 100: 484–494.

    Article  Google Scholar 

  • Sato, Okoshi W. & M. Takatsuka, 2001. Polydora and related genera (Polychaeta, Spionidae) around Puerto Montt and Chiloé Island (Chile), with description of a new species of Dipolydora. Bulletin of Marine Science 68: 485–503.

    Google Scholar 

  • Symonds, M. R. E. & A. Moussalli, 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65: 13–21.

    Article  Google Scholar 

  • Smyth, M. J., 1988. Penetrantia clionoides sp. nov. (Bryozoa), a boring bryozoan in gastropod shells from Guam. Biological Bulletin 174: 276–286.

    Article  Google Scholar 

  • Smyth, M. J., 1989. Bioerosion of gastropod shells: with emphasis on effects of coralline algal cover and shell microstructure. Coral Reefs 8: 119–125.

    Article  Google Scholar 

  • Steele, M. A., 1998. The relative importance of predation and competition in two reef fishes. Oecologia 115: 222–232.

    Article  Google Scholar 

  • Whalan, S., N. S. Webster & A. P. Negri, 2012. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges. PLoS ONE 7: e30386.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • White, F., 1969. Distribution of Trypetesa lampas (Cirripedia, Acrothoracica) in various gastropod shells. Marine Biology 4: 333–339.

    Google Scholar 

Download references

Acknowledgements

M.E. Diez, N. Vázquez and F. Cremonte are members of CONICET. The field work was conducted in a Protected Natural Área of Chubut Province with permits of the Secretaría de Turismo y Areas Protegidas. The financial support was provided by the PADI Foundation and ANPCyT (PICT 2013-1702 and PICT 2013-2582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Diez.

Additional information

Handling editor: Vasilis Valavanis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diez, M.E., Vázquez, N., da Cunha Lana, P. et al. Biogenic calcareous growth on the ribbed mussel Aulacomya atra (Bivalvia: Mytilidae) favours polydorid boring (Polychaeta: Spionidae). Hydrobiologia 766, 349–355 (2016). https://doi.org/10.1007/s10750-015-2467-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2467-y

Keywords

Navigation