, Volume 761, Issue 1, pp 5–43 | Cite as

Antarctic bdelloid rotifers: diversity, endemism and evolution

  • N. S. IakovenkoEmail author
  • J. Smykla
  • P. Convey
  • E. Kašparová
  • I. A. Kozeretska
  • V. Trokhymets
  • I. Dykyy
  • M. Plewka
  • M. Devetter
  • Z. Duriš
  • K. Janko


Antarctica is an isolated continent whose conditions challenge the survival of living organisms. High levels of endemism are now known in many Antarctic organisms, including algae, tardigrades, nematodes and microarthropods. Bdelloid rotifers are a key, widespread and abundant group of Antarctic microscopic invertebrates. However, their diversity, regional distribution and endemism have received little attention until recently. We provide the first authoritative review on Antarctic Bdelloidea, based on published data and new collections. Our analysis reveals the extreme levels of bdelloid endemism in Antarctica. Sixty-six bdelloid morphospecies are now confirmed from the continent, and 83–91 putative species are identified using molecular approaches (depending on the delimitation method used). Twelve previously unknown species are described based on both morphology and molecular analyses. Molecular analyses indicate that only two putative species found in Antarctica proved to be truly cosmopolitan. The level of endemism based on the available data set (95%) is higher than that in any other continent, with many bdelloid species occurring only in maritime or continental Antarctica. These findings are consistent with the long-term presence of Bdelloidea in Antarctica, with their considerable isolation facilitating intraregional radiation, providing further evidence that does not support the microbial global ubiquity hypothesis that “everything is everywhere.”


Bdelloidea DNA taxonomy Molecular biogeography 4× rule Generalized mixed Yule coalescent Poisson tree processes 



We thank Dr. D. Fontaneto, Prof. W. H. De Smet and Prof. L. A. Kutikova for providing a number of poorly accessible literature sources and Dr. Ioanna Vaňková for her kind help and consultations on the Latin names for the new species. Prof. T. G. Barraclough is acknowledged for providing important suggestions on species delimitation methods and the code for PCA. Dr. V. N. Fursov is acknowledged for the help in imaging rotifers. We acknowledge the Centre for Polar Ecology of the University of South Bohemia, Polish Academy of Sciences, National Academy of Sciences of Ukraine, the Academy of Sciences of the Czech Republic, the National Antarctic Scientific Centre of Ukraine and the Centre “Animalia” at the Schmalhausen Institute of Zoology, Kiev, for the financial support and providing equipment and Raytheon Polar Services for logistical support. Funding also was provided by the Polish Ministry of Science and Higher Education (PMSHE) Program for Supporting International Mobility of Scientists and PMSHE grant nos. 2P04F00127, NN304069033 and NN305376438 (JS), the National Science Foundation project no. ANT 0739575 (JS), the Grant Agency of the Czech Academy of Sciences grant no. KJB600450903 (KJ, NI, EK), Czech Ministry of Education project no. LM2010009 (KJ), European Social Fund and the Czech Republic-supported project no. CZ.1.07/2.2.00/28.0190 (KJ), the Institute of Environmental Technologies, Ostrava, CZ.1.05/2.1.00/03.0100 supported by the Research and Development for Innovations Operational Program financed by Structural Funds of European Union and State Budget of the Czech Republic (ZĎ). PC is supported by the Natural Environmental Research Council core funding to the British Antarctic Survey’s core ‘Enviornmental Change and Evolution’ program. This paper contributes to the SCAR ‘State of the Antarctic Ecosystem’ program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2015_2463_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
10750_2015_2463_MOESM2_ESM.xlsx (56 kb)
Supplementary material 2 (XLSX 56 kb)
10750_2015_2463_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3 (XLSX 20 kb)
10750_2015_2463_MOESM4_ESM.pdf (46 kb)
Supplementary material 4 (PDF 46 kb)
10750_2015_2463_MOESM5_ESM.xlsx (134 kb)
Supplementary material 5 (XLSX 133 kb)


  1. Adams, B. J., R. D. Bardgett, C. Ayres, D. H. Wall, J. Aislabie, S. Bamforth, R. Bargagli & S. C. Cary, 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry 38: 3003–3018.CrossRefGoogle Scholar
  2. Allegrucci, G., G. Carchini, P. Convey & V. Sbordoni, 2012. Evolutionary geographic relationships among chironomid midges from maritime Antarctic and sub-Antarctic islands. Biological Journal of the Linnean Society 106: 258–274.CrossRefGoogle Scholar
  3. Andrássy, I., 1998. Nematodes in the sixth continent. Journal of Nematode Systematics and Morphology 1: 107–186.Google Scholar
  4. Barraclough, T. G., D. Fontaneto, C. Ricci & E. A. Herniou, 2007. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Molecular Biology and Evolution 24: 1952–1962.PubMedCrossRefGoogle Scholar
  5. Bērziņš, B., 1987. Rotifer occurence in relation to pH. Hydrobiologia 147: 107–116.CrossRefGoogle Scholar
  6. Birky, C. W. & T. G. Barraclough, 2009. Asexual speciation. In Shön, I., K. Martens & P. Van Dijk (eds), Lost Sex: The evolutionary biology of parthenogenesis. Springer, Dordrecht: 201–216.CrossRefGoogle Scholar
  7. Birky, C. W., C. Wolf, H. Maughan, L. Herbertson & E. Henry, 2005. Speciation and selection without sex. Hydrobiologia 181: 29–45.CrossRefGoogle Scholar
  8. Birky, C. W., C. Ricci, G. Melone & D. Fontaneto, 2011. Integrating DNA and morphological taxonomy to describe diversity in poorly studied microscopic animals: new species of the genus Abrochtha Bryce, 1910 (Rotifera: Bdelloidea: Philodinavidae). Zoological Journal of the Linnean Society 161: 723–734.CrossRefGoogle Scholar
  9. Block, W., R. I. Lewis Smith & A. D. Kennedy, 2009. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biological Reviews 84: 449–484.PubMedCrossRefGoogle Scholar
  10. Bryce, D., 1894. Further notes on Macrotrachellous Callidinae. Journal of the Quekett Microscopical Club 5: 436–455.CrossRefGoogle Scholar
  11. Cathey, D. D., B. C. Parker, G. M. Simmons, W. H. Vongue & M. R. Van Brunt, 1981. The microfauna of algal mats and artificial substrates in Southern Victoria Land lakes of Antarctica. Hydrobiologia 85: 3–15.CrossRefGoogle Scholar
  12. Convey, P., 1996. The influence of environmental characteristics on the life history attributes of Antarctic terrestrial biota. Biological Reviews 71: 191–225.CrossRefGoogle Scholar
  13. Convey, P., 2013. Antarctic ecosystems. In: Levin, S. A. (ed.) Encyclopedia of Biodiversity, Vol. 1, 2nd edition. Elsevier, San Diego: 179–188.Google Scholar
  14. Convey, P. & S. J. McInnes, 2005. Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica. Ecology 86: 519–527.CrossRefGoogle Scholar
  15. Convey, P. & M. I. Stevens, 2007. Antarctic Biodiversity. Science 317: 1877–1878.PubMedCrossRefGoogle Scholar
  16. Convey, P., J. Gibson, C.-D. Hillenbrand, D. A. Hodgson, P. J. A. Pugh, J. L. Smellie & M. I. Stevens, 2008. Antarctic terrestrial life – challenging the history of the frozen continent? Biological Reviews 83: 103–117.PubMedCrossRefGoogle Scholar
  17. Convey, P., D. K. A. Barnes, H. Griffiths, S. Grant, K. Linse & D. N. Thomas, 2012. Biogeography and regional classifications of Antarctica. In Rogers, A. D., N. M. Johnston, E. Murphy & A. Clarke (eds), Antarctica: An Extreme Environment in a Changing World, Chapter 15. Blackwell, Oxford: 471–491.Google Scholar
  18. Convey, P., S. L. Chown, A. Clarke, D. K. A. Barnes, V. Cummings, H. Ducklow, F. Frati, T. G. A. Green, S. Gordon, H. Griffiths, C. Howard-Williams, A. H. L. Huiskes, J. Laybourn-Parry, B. Lyons, A. McMinn, L. S. Peck, A. Quesada, S. Schiaparelli & D. Wall, 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs 84: 203–244.CrossRefGoogle Scholar
  19. Courtright, E. M., D. H. Wall & R. A. Virginia, 2001. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarctic Science 13: 9–17.CrossRefGoogle Scholar
  20. Crawley, M., 2007. The R Book. Wiley, Chichester.CrossRefGoogle Scholar
  21. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dartnall, H. J. G., 1983. Rotifers of the Antarctic and Subantarctic. Hydrobiologia 104: 57–60.CrossRefGoogle Scholar
  23. Dartnall, H. J. G., 1992. The reproductive strategies of two Antartic rotifers. Journal of Zoology Zoological Society of London 227: 145–162.CrossRefGoogle Scholar
  24. Dartnall, H. J. G., 1995a. The rotifers of Heard Island: preliminary survey, with notes on other freshwater groups. Papers and Proceedings of the Royal of Tasmania 129: 7–15.Google Scholar
  25. Dartnall, H. J. G., 1995b. Rotifers, and other aquatic invertebrates, from the Larsemann Hills, Antarctica. Papers and Proceedings of the Royal Society of Tasmania 129: 17–23.Google Scholar
  26. Dartnall, H. J. G. & E. D. Hollowday, 1985. Antarctic rotifers. British Antarctic Survey Reports 100: 1–46.Google Scholar
  27. Davis, R. C., 1981. Structure and function of two Antarctic terrestrial moss communities. Ecological Monographs 51: 125–143.CrossRefGoogle Scholar
  28. de Beauchamp, P., 1913. Rotifères. Deuxième Expédition Antartique Française, 1908–1910. Maison et Co, Paris: 105-116.Google Scholar
  29. de Beauchamp, P., 1940. Turbellariés et Rotifères. In Jeannel, R. (ed.), Croisière du Bougainville aux Iles Australes Françaises. Mémoires du Muséum National d’Histoire Naturelle, Nouvelle Série 14: 313–326.Google Scholar
  30. De Smet, W. H., 1998. Preparation of rotifer trophi for light and scanning electronic microscopy. Hydrobiologia 387(883): 117–121.CrossRefGoogle Scholar
  31. De Smet, W. H. & E. A. Van Rompu, 1994. Rotifera and Tardigrada from some cryoconite holes of a Spitsbergen (Svalbard) glacier. Belgian Journal of Zoology 124: 27.Google Scholar
  32. De Wever, A., F. Leliaert, E. Verleyen, P. Vanormelingen, K. Van der Gucht, D. A. Hodgson, K. Sabbe & W. Vyverman, 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proceedings of the Royal Society B 276: 3591–3599.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Donner, J., 1965. Ordnung Bdelloidea. (Rotatoria, Rädertiere). Bestimmungsbücher zur Bodenfauna Europas 6. Akademie Verlag, Berlin.Google Scholar
  34. Donner, J., 1972a. Bericht über Funde von Rädertieren (Rotatoria) aus der Antarctis. Polskie Archiwum Hydrobiologii 19: 251–252.Google Scholar
  35. Donner, J., 1972b. Die Rädertierbestände submerser Moose und weiterer Merotope im Bereich der Stauräume der Donau an der deutch-österreichischen Landesgrenze. Archiv für Hydrobiologie Suppl 44: 49–114.Google Scholar
  36. Donner, J., 1980. Einige neue Forschungen über bdelloide Rotatorien, besonders in Böden. Revue d’Ecologie et de Biologie du Sol 17: 125–143.Google Scholar
  37. Dougherty, E. C., 1964. Cultivation and nutrition of micrometazoa: I. The Antarctic rotifer Philodina gregaria Murray, 1910. Transactions of American Microscopical Society 53: 1–8.CrossRefGoogle Scholar
  38. Dougherty, E. C. & L. G. Harris, 1963. Antarctic Micrometazoa: fresh-water species in the McMurdo Sound Area. Science 140: 497–498.PubMedCrossRefGoogle Scholar
  39. Dumont, H. J., 1983. Biogeography of rotifers. Hydrobiologia 104: 19–30.CrossRefGoogle Scholar
  40. Everitt, D. A., 1981. An ecological study of an Antarctic freshwater pool with particular reference to Tardigrada and Rotifera. Hydrobiologia 83: 225–237.CrossRefGoogle Scholar
  41. Fenchel, T. & B. J. Finlay, 2004. The ubiquity of small species: patterns of local and global diversity. BioScience 54: 777–784.CrossRefGoogle Scholar
  42. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. C. Vrijenhoek, 1994. DNA primers for amplifcation of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  43. Fontaneto, D., E. A. Herniou, C. Boschetti, M. Caprioli, G. Melone, C. Ricci & T. G. Barraclough, 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5: 914–921.CrossRefGoogle Scholar
  44. Fontaneto, D., T. G. Barraclough, K. Chen, C. Ricci & E. A. Herniou, 2008. Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17: 3136–3146.PubMedCrossRefGoogle Scholar
  45. Fontaneto, D., C. Q. Tang, U. Obertegger, F. Leasi & T. G. Barraclough, 2012. Different diversification rates between sexual and asexual organisms. Journal of Evolutionary Biology 39: 262–270.CrossRefGoogle Scholar
  46. Fontaneto, D., N. Iakovenko & W. De Smet, 2015. Diversity gradients of rotifer species richness in Antarctica. Hydrobiologia. doi: 10.1007/s10750-015-2258-5.Google Scholar
  47. Fraser, C. I., A. Terauds, J. Smellie, P. Convey & S. L. Chown, 2014. Geothermal activity helps life survive ice ages. Proceedings of the National Academy of Sciences of the USA 111: 5634–5639.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Freckman, D. W. & R. A. Virginia, 1993. Extraction of nematodes from Dry Valley Antarctic soils. Polar Biology 13: 483-487.CrossRefGoogle Scholar
  49. Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ganter, P. F., 2011. Everything is not everywhere: the distribution of cactophilic yeast. In Fontaneto, D. (ed.), Biogeography of microscopic organisms. Cambridge University Press, Cambridge: 130–174.CrossRefGoogle Scholar
  51. Garey, J. R., S. J. McInnes & P. B. Nichols, 2008. Global diversity of tardigrades (Tardigrada) in freshwater. Hydrobiologia 595: 101–106.CrossRefGoogle Scholar
  52. Greenslade, P., 1995. Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Polskie Pismo Entomologiczne 64: 305–319.Google Scholar
  53. Haigh, S. B., 1965. The bdelloid rotifers of New Zealand, part II. Journal of the Quekett Microscopical Club 30(7–13): 36–41.Google Scholar
  54. Haigh, S. B., 1966. The bdelloid rotifers of New Zealand, Part III. Journal of the Quekett Microscopical Club 30: 193–201.Google Scholar
  55. Hillebrand, H. & A. I. Azovsky, 2001. Body size determines the strength of the latitudinal diversity gradient. Ecography 24: 251–256.CrossRefGoogle Scholar
  56. Martiny, J. B. H., B. J. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A.-L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.PubMedCrossRefGoogle Scholar
  57. Iakovenko, N., 2004. Dynamika naselennia kolovertok pidstylky suboru v zymovyy period. In Ivanets, O. R. (ed.), Naukovi osnovy zberezennia biotychnoi riznomanitnosti. Tematychnyi zbirnyk v. 5. Liga-Press, Lviv: 279–284.Google Scholar
  58. Iakovenko, N. S. & O. V. Tyshchenko, 2006. Rotifers (Rotifera) as a part of terrestrial bryophytic communities in Argentina Archipelago islands (Antarctic), Russia in the Antarctic. AASRI, St.-Petersburg: 229–230.Google Scholar
  59. Iakovenko, N. S., E. Kašparová, M. Plewka & K. Janko, 2013. Otostephanos (Rotifera, Bdelloidea, Habrotrochidae) with the description of two new species. Systematics and Biodiversity 11: 477–494.CrossRefGoogle Scholar
  60. Jennings, P. G., 1976a. Ecological Studies on Antartic Tardigrades and Rotifers. Ph.D. Thesis, University of Leicester.Google Scholar
  61. Jennings, P. G., 1976b. The Tardigrada of Signy Island, South Orkney Islands, with a note on Rotifera. BAS Bulletin 44: 1–25.Google Scholar
  62. Jennings, P. G., 1979. The Signy Island terrestrial reference sites: population dynamics of Tardigrada and Rotifera. BAS Bulletin 47: 89–105.Google Scholar
  63. Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Koste, W., 1996a. Über die moosbewohnende Rotatorienfauna Madagaskars. Osnabrücker Naturwissenschaftliche Mitteilungen 22: 235–253.Google Scholar
  65. Koste, W., 1996b. On soil Rotatoria from a lithotelma near Halali Lodge in Etosha National Park in N-Namibia, South Africa. Internationale Revue der gesamten Hydrobiologie und Hydrographie 81: 353–365.CrossRefGoogle Scholar
  66. Kutikova, L. A., 2005. Bdelloidnye kolovratki fauny Rossii. KMK Press, St. Peterburg.Google Scholar
  67. Lacap, D. C., M. C. Y. Lau & S. B. Pointing, 2011. Biogeography of procaryotes. In Fontaneto, D. (ed.), Biogeography of microscopic organisms. Cambridge University Press, Cambridge: 35–42.CrossRefGoogle Scholar
  68. Maslen, N. R. & P. Convey, 2006. Nematode diversity and distribution in the southern maritime Antarctic – clues to history? Soil Biology and Biochemistry 38: 3141–3151.CrossRefGoogle Scholar
  69. McGaughran, A., I. D. Hogg & M. I. Stevens, 2008. Patterns of population genetic structure for springtails and mites in southern Victoria Land, Antarctica. Molecular Phylogenetics and Evolution 46: 606–618.PubMedCrossRefGoogle Scholar
  70. McGaughran, A., G. Torricelli, A. Carapelli, F. Frati, M. I. Stevens, P. Convey & I. D. Hogg, 2010. Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. Journal of Biogeography 37: 103–119.CrossRefGoogle Scholar
  71. Milne, W., 1916. On the Bdelloid Rotifera of South Africa. Journal of the Quekett Microscopical Club 13(47–83): 149–184.Google Scholar
  72. Murray, J., 1910. Antarctic Rotifera. British Antarctic. Expedition 1907–9(1): 41–65.Google Scholar
  73. Murray, J., 1911. Bdelloid Rotifera of the South Africa. Annals Mededelingen of the van het Transvaal Museum 3: 1–19.Google Scholar
  74. Nkem, J. N., D. N. Wall, R. A. Virginia, J. E. Barrett, E. J. Broos, D. L. Porazinska & B. J. Adams, 2006. Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology 29: 346–352.CrossRefGoogle Scholar
  75. Örstan, A., 1992. Toxicity of acrylamide derivatives to embryos of the rotifer Adineta vaga. Bulletin of Environmental Contamination and Toxicology 48: 901–906.PubMedCrossRefGoogle Scholar
  76. Örstan, A., 1995. A new species of bdelloid rotifer from Sonora, Mexico. The Southwestern Naturalist 40: 255–258.Google Scholar
  77. Peck, L. S., P. Convey & D. K. A. Barnes, 2006. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews 81: 75–109.PubMedCrossRefGoogle Scholar
  78. Pisa, S., E. M. Biersma, P. Convey, J. Patiño, A. Vanderpoorten, O. Werner & R. M. Ros, 2014. The cosmopolitan moss Bryum argenteum in Antarctica: recent colonization or in situ survival? Polar Biology 37: 1469–1477.CrossRefGoogle Scholar
  79. Porazinska, D. L., D. H. Wall & R. A. Virginia, 2002. Invertebrates in ornithogenic soils on Ross Island. Antarctica. Polar Biol. 25: 569–574.Google Scholar
  80. Porazinska, D. L., A. G. Fountain, T. H. Nylen, M. Tranter, R. A. Virginia & D. H. Wall, 2004. The Biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36: 84–91.CrossRefGoogle Scholar
  81. Priddle, J. & H. J. G. Dartnall, 1978. The biology of an Antarctic aquatic moss community. Freshwater Biology 8: 469–480.CrossRefGoogle Scholar
  82. Pugh, P. J. A., 1993. A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. Journal of Natural History 27: 232–421.CrossRefGoogle Scholar
  83. Pugh, P. J. A. & P. Convey, 2008. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography 35: 2176–2186.CrossRefGoogle Scholar
  84. Rambaut, A., 2012. FigTree v.1.4.2.
  85. Rambaut, A., M. A. Suchard, W. Xie, A. J. Drummond, 2013. Tracer v1.6.
  86. Ricci, C., 1987. Ecology of bdelloids: how to be successful. Hydrobiologia 147: 117–127.CrossRefGoogle Scholar
  87. Ricci, C., 2001. Dormancy patterns in rotifers. Hydrobiologia 446(447): 1–11.CrossRefGoogle Scholar
  88. Ricci, C. & M. Caprioli, 2005. Anhydrobiosis in bdelloid species, populations and individuals. Integrative and Comparative Biology 45: 750–763.CrossRefGoogle Scholar
  89. Ricci, C., G. Melone & E. Walsh, 2001. A carnivorous bdelloid rotifer, Abrochtha carnivora n. sp. Invertebrate Biology 120: 136–141.CrossRefGoogle Scholar
  90. Ricci, C., R. Shiel, D. Fontaneto & G. Melone, 2003. Bdelloid Rotifers Recorded from Australia with Description of Philodinavus aussiensis n.sp. Zoologischer Anzeiger 242: 241–248.CrossRefGoogle Scholar
  91. Richters, F., 1907. Die Fauna der Moosrasen des Gaussbergs und einiger südlicher Inseln. Deutsche Südpolar-Expedition 1901–1903(9): 259–302.Google Scholar
  92. Richters, F., 1908. Moosbewohner. Schwedischen Südpolar. Expedition 1901–1903(4): 1–16.Google Scholar
  93. Robeson, M. S., A. J. King, K. R. Freeman, C. W. Birky, A. P. Martin & S. K. Schmidt, 2011. Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proceedings of National Academy of Sciences of the United States of America 108: 4406–4410.CrossRefGoogle Scholar
  94. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Ruttner-Kolisko, A. & E. Kronsteiner, 1979. Autokologie Parameter von Rotatorien aus extremen Biotopen. Jahresbericht Biologische Station Lunz 2: 111–114.Google Scholar
  96. Sanderson, M. J., 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19: 101–109.PubMedCrossRefGoogle Scholar
  97. Segers, H., 2007. Annotated checklist of the rotifers (Phylum Rotifera), with the notes on nomenclature, taxonomy and distribution. Zootaxa 1564: 1–104.Google Scholar
  98. Smykla, J., D. L. Porazinska, N. Iakovenko, K. Janko, W. M. Weiner, A. W. Niedbala & M. Drewnik, 2010. Studies on the Antarctic soil invertebrates: preliminary data on rotifers (Rotatoria) with notes on other taxa from Edmonson Point (Northern Victoria Land, Continental Antarctic). Acta Societatis Zoologicae Bohemicae 74: 135–140.Google Scholar
  99. Smykla, J., B. Krzewicka, K. Wilk, S. D. Emslie & L. Śliwa, 2011. Additions to the lichen flora of Victoria Land, Antarctica. Polish Polar Research 32: 123–138.CrossRefGoogle Scholar
  100. Smykla, J., N. Iakovenko, M. Devetter & Ł. Kaczmarek, 2012. Diversity and distribution of tardigrades in soils of Edmonson Point (Northern Victoria Land, continental Antarctica). Czech Polar Reports 2: 61–70.CrossRefGoogle Scholar
  101. Smykla, J., M. Drewnik, E. Szarek-Gwiazda, Y. S. Hii, W. Knap & S. D. Emslie, 2015. Variation in the characteristics and development of soils at Edmonson Point due to abiotic and biotic factors, northern Victoria Land, Antarctica. Catena 132: 56–67.CrossRefGoogle Scholar
  102. Sohlenius, B. & S. Boström, 2005. The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biology 28: 439–448.CrossRefGoogle Scholar
  103. Sohlenius, B. & S. Boström, 2008. Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biology 31: 817–825.CrossRefGoogle Scholar
  104. Sohlenius, B., S. Boström & A. Hirschfelder, 1996. Distribution patterns of microfauna (nematodes, rotifers and tardigrades) on nunataks in Dronning Maud Land, East Antarctica. Polar Biology 16: 191–200.CrossRefGoogle Scholar
  105. Stevens, M. I. & I. D. Hogg, 2006. Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biology and Biochemistry 38: 3171–3180.CrossRefGoogle Scholar
  106. Stevens, M. I. S., F. Frati, A. McGaughran, G. Spinsanti & D. Hogg, 2006. Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zoologica Scripta 36: 201–212.CrossRefGoogle Scholar
  107. Strunecký, O., J. Elster & J. Komárek, 2012. Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. Microbiol Ecology 82: 482–490.CrossRefGoogle Scholar
  108. Sudzuki, M., 1964. On the microfauna of the Antarctic region, I. Moss-water community at Langhovde. Japanese Antarctic Research Expedition Scientific Reports, Series E 19: 1–41.Google Scholar
  109. Sudzuki, M., 1979. On the microfauna of the Antarctic region, III. Microbiota of the terrestrial interstices. Memoirs of National Institute of Polar Research (Tokyo). Special issue 11: 104–126.Google Scholar
  110. Sudzuki, M., 1988. Comments on the antarctic Rotifera. Hydrobiologia 165: 89–96.CrossRefGoogle Scholar
  111. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.PubMedCentralPubMedCrossRefGoogle Scholar
  112. Terauds, A., S. L. Chown, F. Morgan, H. J. Peat, D. Watts, H. Keys, P. Convey & D. M. Bergstrom, 2012. Conservation biogeography of the Antarctic. Diversity and Distributions 18: 726–741.CrossRefGoogle Scholar
  113. Torricelli, G., F. Frati, P. Convey, M. Telford & A. Carapelli, 2010. Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarctic Science 22: 757–765.CrossRefGoogle Scholar
  114. Velasco-Castrillón, A. & M. I. Stevens, 2014. Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biology and Biochemistry 70: 272–284.CrossRefGoogle Scholar
  115. Velasco-Castrillón, A., T. J. Page, J. A. E. Gibson & M. I. Stevens, 2014a. Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity. doi: 10.1080/14888386.2014.930717.Google Scholar
  116. Velasco-Castrillón, A., M. B. Schultz, F. Colombo, J. A. E. Gibson, K. A. Davies, A. D. Austin & M. I. Stevens, 2014b. Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS One 9: e87529.PubMedCentralPubMedCrossRefGoogle Scholar
  117. Velasco-Castrillón, A., J. A. E. Gibson & M. I. Stevens, 2014c. A review of current Antarctic limno-terrestrial microfauna. Polar Biology 37: 1517–1531.CrossRefGoogle Scholar
  118. Voigt, M., 1956–1957. Rotatoria: Die Rädertiere Mitteleuropas. Berlin-Nikolassee, Berlin.Google Scholar
  119. Vyverman, W., E. Verleyen, A. Wilmotte, D. A. Hodgson, A. Willems, K. Peeters, B. Van de Vijver, A. De Wever, F. Leliaert & K. Sabbe, 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Science 4: 103–113.CrossRefGoogle Scholar
  120. Williams, D. M., 2011. Historical biogeography, microbial endemism and the role of classification: everything is endemic. In Fontaneto, D. (ed.), Biogeography of microscopic organisms. Cambridge University Press, Cambridge: 11–31.CrossRefGoogle Scholar
  121. Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 15: 2869–2876.CrossRefGoogle Scholar

Copyright information

© European Union 2015

Authors and Affiliations

  • N. S. Iakovenko
    • 1
    • 2
    Email author
  • J. Smykla
    • 3
    • 4
  • P. Convey
    • 5
  • E. Kašparová
    • 6
  • I. A. Kozeretska
    • 7
  • V. Trokhymets
    • 7
  • I. Dykyy
    • 8
  • M. Plewka
    • 9
  • M. Devetter
    • 10
  • Z. Duriš
    • 1
  • K. Janko
    • 6
    • 1
  1. 1.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  2. 2.Department of Invertebrate Fauna and SystematicsSchmalhausen Institute of Zoology NAS of UkraineKievUkraine
  3. 3.Department of Biodiversity, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
  4. 4.Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonUSA
  5. 5.British Antarctic SurveyNERCCambridgeUK
  6. 6.Laboratory of Fish GeneticsInstitute of Animal Physiology and Genetics AS ČRLiběchovCzech Republic
  7. 7.Educational and Scientific Centre “Institute of Biology”Taras Shevchenko National University of KievKievUkraine
  8. 8.Department of ZoologyIvan Franko National University of LvivLvivUkraine
  9. 9.Department of BiologyState GymnasiumGevelsbergGermany
  10. 10.Biology CentreInstitute of Soil Biology AS ČRCeske BudejoviceCzech Republic

Personalised recommendations