, Volume 766, Issue 1, pp 151–163 | Cite as

Quantitative effects of pycnocline and dissolved oxygen on vertical distribution of moon jellyfish Aurelia aurita s.l.: a case study of Mikawa Bay, Japan

  • Kentaro S. SuzukiEmail author
  • Akira Yasuda
  • Yusuke Murata
  • Emi Kumakura
  • Satoshi Yamada
  • Noriyuki Endo
  • Yasuyuki Nogata
Primary Research Paper


Blooms of moon jellyfish Aurelia aurita s.l. occur in various vertical distribution patterns within the water column. Reasons for these distribution patterns have remained obscure. To quantify the influence of pycnocline and low dissolved oxygen (DO) on the vertical distribution of A. aurita aggregations, we investigated temperature, salinity, DO, and observed densities of A. aurita at 1–2 m depth intervals via video camera in a eutrophicated, enclosed bay, Mikawa Bay, Japan, for 3 years. During the observed period, stratification and hypoxic status of the bay varied seasonally and interannually due to climatic events, such as rainy season and typhoon passage. Both sharp pycnocline and low DO limited A. aurita vertical distribution. The more strongly stratified the water column, the more the upper boundary of A. aurita distribution was restricted. Bottom hypoxic water limited the lower boundary of A. aurita distribution. The DO threshold for in situ distribution was estimated to be ~2.5 mg l−1, which is much higher than the experimentally obtained, sublethal values identified in previous studies. Our results show that climatic events affect A. aurita vertical distribution through changes in the physical characteristics of the water column.


Jellyfish Aureliaaurita s.l. Vertical distribution Pycnocline Low dissolved oxygen 



We thank Capt. Takayoshi Yamashita of the Dai-Roku Marutoshi Maru, and members of Ocean Planning Co., Ltd. for their assistance during our field observations. We are also grateful to the members of the Morozaki Fisheries Cooperative, Aichi Prefecture for their cooperation in our field surveys. We appreciate the constructive comments of Dr. Yukinori Nakane and the English edits of Dr. Michelle L. Walsh on the manuscript. We would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.


  1. Albert, D. J., 2007. Aurelia labiata medusae (Scyphozoa) in Roscoe Bay avoid tidal dispersion by vertical migration. Journal of Sea Research 57: 281–287.CrossRefGoogle Scholar
  2. Albert, D. J., 2008. Adaptive behaviours of the jellyfish Aurelia labiata in Roscoe Bay on the west coast of Canada. Journal of Sea Research 59: 198–201.CrossRefGoogle Scholar
  3. Aoki, K., S. Yamada, M. Toyokawa, A. Yasuda & T. Kikuchi, 2012. Horizontal distribution and growth of jellyfish, Aurelia aurita (Linnaeus 1758) sensu lato, in Mikawa Bay, Japan. Coastal Marine Science 35: 103–111.Google Scholar
  4. Arai, M. N., 1991. Attraction of Aurelia and Aequorea to prey. Hydrobiologia 216(217): 363–366.CrossRefGoogle Scholar
  5. Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusa: a review. Scientia Marina 56: 99–108.Google Scholar
  6. Barz, K. & H.-J. Hirche, 2005. Seasonal development of scyphozoan medusae and the predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic Sea). Marine Biology 147: 465–476.CrossRefGoogle Scholar
  7. Cervetto, G., M. Pagano & R. Gaudy, 1995. Feeding behaviour and migrations in a natural population of the copepod Acartia tonsa. Hydrobiologia 300–301: 237–248.CrossRefGoogle Scholar
  8. Condon, R. H., D. K. Steinberg, P. A. del Giorgio, T. C. Bouvier, D. A. Bronk, W. M. Graham & H. W. Ducklow, 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proceedings of the National Academy of Sciences of the United States of America 108: 10225–10230.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dawson, M. N. & D. K. Jacobs, 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). The Biological Bulletin 200: 92–96.PubMedCrossRefGoogle Scholar
  10. Dawson, M. N. & L. E. Martin, 2001. Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259–273.CrossRefGoogle Scholar
  11. Dawson, M. N., A. Sen Gupta & M. H. England, 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America 102: 11968–11973.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Diaz, R. J., 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30: 275–281.PubMedCrossRefGoogle Scholar
  13. Dickey, T. D. & J. J. Simpson, 1983. The sensitivity of upper ocean structure to time varying wind direction. Geophysical Research Letters 10: 133–136.CrossRefGoogle Scholar
  14. DiMarco, S. F., P. Chapman, N. Walker & R. D. Hetland, 2010. Does local topography control hypoxia on the eastern Texas–Louisiana shelf? Journal of Marine Systems 80: 25–35.CrossRefGoogle Scholar
  15. Dong, Z., D. Liu & J. K. Keesing, 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin 60: 954–963.PubMedCrossRefGoogle Scholar
  16. Dong, Z., D. Liu, Y. Wang, B. Di, X. Song & Y. Shi, 2012. A report on a moon jellyfish Aurelia aurita bloom in Sishili Bay, northern Yellow Sea of China in 2009. Aquatic Ecosystem Health & Management 15: 161–167.Google Scholar
  17. Fujiwara, T. & Y. Yamada, 2002. Inflow of oceanic water into Tokyo Bay and generation of a subsurface hypoxic water mass. Journal of Geophysical Research 107: 3045.CrossRefGoogle Scholar
  18. Fujiwara, T., T. Takahashi, A. Kasai, Y. Sugiyama & M. Kuno, 2002. The role of circulation in the development of hypoxia in Ise Bay, Japan. Estuarine, Coastal and Shelf Science 54: 19–31.CrossRefGoogle Scholar
  19. Graham, W. M. & R. M. Kroutil, 2001. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. Journal of Plankton Research 23: 67–74.CrossRefGoogle Scholar
  20. Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.CrossRefGoogle Scholar
  21. Hagy, J. D., J. C. Lehrter & M. C. Murrell, 2006. Effects of Hurricane Ivan on water quality in Pensacola Bay, Florida. Estuaries and Coasts 29: 919–925.CrossRefGoogle Scholar
  22. Hamner, W. M. & D. Schneider, 1986. Regularly spaced rows of medusae in the Bering Sea: role of Langmuir circulation. Limnology and Oceanography 31: 171–177.CrossRefGoogle Scholar
  23. Han, C.-H., M. Kawahara & S. Uye, 2009. Seasonal variations in the trophic relationship between the scyphomedusa Aurelia aurita s.l. and mesozooplankton in a eutrophic brackish-water lake, Japan. Plankton & Benthos Research 4: 14–22.CrossRefGoogle Scholar
  24. Herbert, N. A. & J. F. Steffensen, 2005. The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Marine Biology 147: 1403–1412.CrossRefGoogle Scholar
  25. Huntley, M. E. & L. A. Hobson, 1978. Medusa predation and plankton dynamics in a temperate fjord, British Columbia. Journal of the Fisheries Research Board of Canada 35: 257–261.CrossRefGoogle Scholar
  26. Ishii, H. & F. Tanaka, 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiologia 451: 311–320.CrossRefGoogle Scholar
  27. Keister, J. E., E. D. Houde & D. L. Breitburg, 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Marine Ecology Progress Series 205: 43–59.CrossRefGoogle Scholar
  28. Ki, J.-S., D.-S. Hwang, K. Shin, W. D. Yoon, D. Lim, Y. S. Kang, Y. Lee & J.-S. Lee, 2008. Recent moon jelly (Aurelia sp.1) blooms in Korean coastal waters suggest global expansion: examples inferred from mitochondrial COI and nuclear ITS-5.8S rDNA sequences. ICES Journal of Marine Science 65: 443–452.CrossRefGoogle Scholar
  29. Kideys, A. E. & Z. Romanova, 2001. Distribution of gelatinous macrozooplankton in the southern Black Sea during 1996–1999. Marine Biology 139: 535–547.CrossRefGoogle Scholar
  30. Kogovšek, T., B. Bogunović & A. Malej, 2010. Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645: 81–96.CrossRefGoogle Scholar
  31. Kuwabara, R., 1969. Ecological studies of medusa Aurelia aurita Lamarck-II. Distribution and biomass of Aurelia in Lake Hamana in summer 1965. Bulletin of the Marine Biological Station Asamushi 8: 193–199.Google Scholar
  32. Lebrato, M., K. A. Pitt, A. K. Sweetman, D. O. B. Jones, J. E. Cartes, A. Oschlies, R. H. Condon, J. C. Molinero, L. Adler, C. Gaillard, D. Lloris & D. S. M. Billett, 2012. Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690: 227–245.CrossRefGoogle Scholar
  33. Magome, S., T. Yamashita, T. Kohama, A. Kaneda, Y. Hayami, S. Takahashi & H. Takeoka, 2007. Jellyfish patch formation investigated by aerial photography and drifter experiment. Journal of Oceanography 63: 761–773.CrossRefGoogle Scholar
  34. Makabe, R., T. Kurihara & S. Uye, 2012. Spatio-temporal distribution and seasonal population dynamics of the jellyfish Aurelia aurita s.l. studied with Dual-frequency IDentification SONar (DIDSON). Journal of Plankton Research 34: 936–950.CrossRefGoogle Scholar
  35. Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.CrossRefGoogle Scholar
  36. Matanoski, J. C., R. R. Hood & J. E. Purcell, 2001. Characterizing the effect of prey on swimming and feeding efficiency of the scyphomedusa Chrysaora quinquecirrha. Marine Biology 139: 191–200.CrossRefGoogle Scholar
  37. Mills, C. E., 1984. Density is altered in hydromedusae and ctenophores in response to changes in salinity. The Biological Bulletin 166: 206–215.CrossRefGoogle Scholar
  38. Ministry of Internal Affairs and Communications Japan, 2014. Population and Households of Japan 2010. Statistics Bureau, Ministry of Internal Affairs and Communications, Japan, Tokyo.Google Scholar
  39. Möller, H., 1984. Reduction of a larval herring population by jellyfish predator. Science 224: 621–622.PubMedCrossRefGoogle Scholar
  40. Mutlu, E., 2001. Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black Sea. Marine Biology 138: 329–339.CrossRefGoogle Scholar
  41. Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler & W. R. Boynton, 1984. Chesapeake Bay anoxia: origin, development, and significance. Science 223: 22–27.PubMedCrossRefGoogle Scholar
  42. Pagès, F., 2001. Past and Present Anthropogenic Factors Promoting the Invasion, Colonization and Dominance by Jellyfish of a Spanish Coastal Lagoon. In Briand, F. (ed.), Gelatinous Zooplankton Outbreaks: Theory and Practice. CIESM Work Shop Series, no 14. CIESM, Monaco: 59–71.Google Scholar
  43. Pearre, S. J., 1973. Vertical migration and feeding in Sagitta elegans Verrill. Ecology 54: 300–314.CrossRefGoogle Scholar
  44. Pinel-Alloul, B., 1995. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300–301: 17–42.CrossRefGoogle Scholar
  45. Purcell, J. E., D. L. Breitburg, M. B. Decker, M. Graham, M. J. Youngbluth & K. A. Raskoff, 2001. Pelagic Cnidarians and Ctenophores in Low Dissolved Oxygen Environments: A Review. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: Consequences for Living Resources and Ecosystems, Coastal and Estuarine Studies, Vol. 58. American Geophysical Union, Washington, D. C.: 77–100.CrossRefGoogle Scholar
  46. Purcell, J. E., S. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  47. Purcell, J. E., M. Decker, D. Breitburg & K. Broughton, 2014. Fine-scale vertical distributions of Mnemiopsis leidyi ctenophores: predation on copepods relative to stratification and hypoxia. Marine Ecology Progress Series 500: 103–120.CrossRefGoogle Scholar
  48. Rasul, E., T. Inoue, S. Aoki, K. Yokota, Y. Matsumoto, Y. Okubo & F. Djumanto, 2013. Influence of tropical cyclone on the water quality of Atsumi Bay. Journal of Water and Environmantal Technology 11: 439–451.CrossRefGoogle Scholar
  49. Roman, M. R., A. L. Gauzens, W. K. Rhinehart & J. R. White, 1993. Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnology and Oceanography 38: 1603–1614.CrossRefGoogle Scholar
  50. Rombough, P. J., 1988. Respiratory Gas Exchange, Aerobic Metabolism, and Effects of Hypoxia During Early Life. In Hoar, W. S. & D. J. Randall (eds), Fish Physiology, Vol. 11A. Academic Press, San Diego: 59–161.Google Scholar
  51. Rutherford, L. D. J. & E. V. Thuesen, 2005. Metabolic performance and survival of medusae in estuarine hypoxia. Marine Ecology Progress Series 294: 189–200.CrossRefGoogle Scholar
  52. Shoji, J., R. Masuda, Y. Yamashita & M. Tanaka, 2005. Effect of low dissolved oxygen concentrations on behavior and predation rates on red sea bream Pagrus major larvae by the jellyfish Aurelia aurita and by juvenile Spanish mackerel Scomberomorus niphonius. Marine Biology 147: 863–868.CrossRefGoogle Scholar
  53. Suzuki, T. & Y. Matsukawa, 1987. Hydrography and budget of dissolved total nitrogen and dissolved oxygen in the stratified season in Mikawa Bay, Japan. Journal of the Oceanographical Society of Japan 43: 37–48.CrossRefGoogle Scholar
  54. Toyokawa, M., T. Furota & M. Terazaki, 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biology & Ecology 47: 48–58.Google Scholar
  55. UNESCO, 1983. Algorithms for Computation of Fundamental Properties of Seawater. UNESCO Technical Papers in Marine Science 44: 53 pp.Google Scholar
  56. Uye, S., N. Fujii & H. Takeoka, 2003. Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biology & Ecology 50: 17–21.Google Scholar
  57. Vaquer-Sunyer, R. & C. M. Duarte, 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105: 15452–15457.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Werner, T. & F. Buchholz, 2013. Diel vertical migration behaviour in euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. Journal of Plankton Research 35: 792–812.CrossRefGoogle Scholar
  59. Yamamoto, T. & M. Okai, 2000. Effects of diffusion and upwelling on the formation of red tides. Journal of Plankton Research 22: 363–380.CrossRefGoogle Scholar
  60. Yamamoto, T., M. Okai, K. Takeshita & T. Hashimoto, 1997. Characteristics of meteorological conditions in the years of intensive red tide occurrence in Mikawa Bay, Japan. Bulletin of the Japanese Society of Fisheries Oceanography 61: 114–122. (in Japanese with English abstract).Google Scholar
  61. Yasuda, T., 1970. Ecological studies on the jelly-fish, Aurelia aurita (L.), in Urazoko Bay, Fukui prefecture-V. Vertical distribution of the medusa. Annual Report of the Noto Marine Laboratory 10: 15–22.Google Scholar
  62. Yasuda, T., 1973. Ecological studies on the jelly-fish, Aurelia aurita (Linné), in Urazoko Bay, Fukui prefecture-VIII. Diel vertical migration of the medusa in early fall, 1969. Publications of the Seto Marine Biological Laboratory 20: 491–500.Google Scholar
  63. Zaitsev, Y. & V. Mamaev, 1997. Biological diversity in the Black Sea: a study of change and decline. United Nations Publications, New York.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kentaro S. Suzuki
    • 1
    Email author
  • Akira Yasuda
    • 2
    • 5
  • Yusuke Murata
    • 2
    • 6
  • Emi Kumakura
    • 3
  • Satoshi Yamada
    • 4
  • Noriyuki Endo
    • 1
    • 6
  • Yasuyuki Nogata
    • 1
  1. 1.Environmental Science Research LaboratoryCentral Research Institute of Electric Power IndustryAbikoJapan
  2. 2.Ocean Planning Co., Ltd.NagoyaJapan
  3. 3.CERES Inc.AbikoJapan
  4. 4.Aichi Fisheries Research InstituteGamagohriJapan
  5. 5.Tokai Marinos Tech Co., Ltd.TokonameJapan
  6. 6.Himeji EcoTech Co., Ltd.HimejiJapan

Personalised recommendations