Modeling habitat preferences of Caspian kutum, Rutilus frisii kutum (Kamensky, 1901) (Actinopterygii, Cypriniformes) in the Caspian Sea

Abstract

Predicting and modeling of habitat preferences of fish is a very important issue for aquatic management. Classification trees (CTs) were used to predict the habitat preferences of the Caspian kutum (Rutilus frisii kutum, hereafter kutum) in the southern Caspian Sea. The applied model was optimized with genetic algorithm (GA) and greedy stepwise (GS) to select the most explanatory variables for predicting the presence/absence of kutum. The suitability index was considered to determine the quality and suitability of fish habitat in the sea. The results of Paired Student’s t tests showed that there was a significant difference between predictive performances of models before and after variable selection methods. Both optimizers improved the predictive power of CTs and resulted in a better understanding of CTs by making a selection of the sea characteristics that were used as inputs to the models. The results show that the effect of different seasons, sea depth, and photosyntheticaly active radiation were the main predictors affecting the habitat preferences of kutum in the Caspian Sea. Constructed trees in combination with GA and GS showed high capability when applied to predict the habitat preferences of this valuable commercial fish species. Determining the habitat needs of the target fish will enhance local fisheries performances and the long-term conservation planning of the fish to implement the ecosystem-based management in the Caspian Sea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdolhay, H., S. Daud, S. Rezvani Ghilkolahi, M. Pourkazemi, S. Siraj & M. Abdul Satar, 2011. Fingerling production and stock enhancement of Mahisefid (Rutilus frisii kutum) lessons for others in the south of Caspian Sea. Reviews in Fish Biology and Fisheries 21(2): 247–257.

    Article  Google Scholar 

  2. Abell, R., J. D. Allan & B. Lehner, 2007. Unlocking the potential of protected areas for freshwaters. Biological Conservation 134(1): 48–63.

    Article  Google Scholar 

  3. Afraei Bandpei, M. A., M. Mashhor, S. Abdolmalaki & M. A. El-sayed, 2009. Food and feeding habits of the Caspian kutum, Rutilus frisii kutum (Cyprinidae) in Iranian waters of the Caspian Sea. Cybium 33: 193–198.

    Google Scholar 

  4. Afraei Bandpei, M. A., M. Mansor, S. Abdolmalaki, F. Keymaram, M. Mohamad Isa & A. A. Janbaz, 2010. Age and growth of kutum (Rutilus frisii kutum, Kamensky, 1901) in southern Caspian Sea. International Aquatic Research 2: 25–33.

    Google Scholar 

  5. Afraei Bandpei, M. A., M. Mashhor, S. H. Abdolmaleki, S. H. Najafpour, A. Bani, R. Pourgholam, H. Fazli, H. Nasrolahzadeh & A. A. Janbaz, 2011. The environmental effect on spawning time, length at maturity and fecundity of kutum (Rutilus frisii kutum, Kamensky, 1901) in southern part of Caspian Sea. Iran. Iranica Journal of Energy & Environment 2(4): 374–381.

    Google Scholar 

  6. Ambelu, A., K. Lock & P. Goethals, 2010. Comparison of modelling techniques to predict macroinvertebrate community composition in rivers of Ethiopia. Ecological Informatics 5(2): 147–152.

    Article  Google Scholar 

  7. Ambelu, A., S. Mekonen, M. Koch, T. Addis, P. Boets, G. Everaert & P. Goethals, 2014. The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia. PLoS One 9(11): e112221.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Armour, C. L. & J. G. Taylor, 1991. Evaluation of the instream flow incremental methodology by U.S. fish and wildlife service field users. Fisheries 16(5): 36–43.

    Article  Google Scholar 

  9. Bani, A. & A. Haghi Vayghan, 2011. Temporal variations in haematological and biochemical indices of the Caspian kutum, Rutilus frisii kutum. Ichthyological Research 58(2): 126–133.

    Article  Google Scholar 

  10. Bani, A., A. Haghi Vayghan & M. NaserAlavi, 2015. The effects of salinity on reproductive performance and plasma levels of sex steroids in Caspian kutum Rutilus frisii kutum. Aquaculture Research. doi:10.1111/are.12762.

    Google Scholar 

  11. Bellido, J., A. Brown, V. Valavanis, A. Giráldez, G. Pierce, M. Iglesias & A. Palialexis, 2008. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 612(1): 171–184.

    Article  Google Scholar 

  12. Belpaire, C., R. Smolders, I. Auweele, D. Ercken, J. Breine, G. Van Thuyne & F. Ollevier, 2000. An Index of Biotic Integrity characterizing fish populations and the ecological quality of Flandrian water bodies. Hydrobiologia 434(1–3): 17–33.

    Article  Google Scholar 

  13. Birol Kara, A., A. J. Wallcraft, E. Joseph Metzger & M. Gunduz, 2010. Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea. Continental Shelf Research 30(10–11): 1211–1225.

    Article  Google Scholar 

  14. Blott, S. J. & K. Pye, 2012. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 59(7): 2071–2096.

    Article  Google Scholar 

  15. Blum, A. L. & P. Langley, 1997. Selection of relevant features and examples in machine learning. Artificial Intelligence 97(1–2): 245–271.

    Article  Google Scholar 

  16. Bockelmann, B. N., E. K. Fenrich, B. Lin & R. A. Falconer, 2004. Development of an ecohydraulics model for stream and river restoration. Ecological Engineering 22(4–5): 227–235.

    Article  Google Scholar 

  17. Boros, E., T. Horiyama, T. Ibaraki, K. Makino & M. Yagiura, 2003. Finding essential attributes from binary data. Annals of Mathematics and Artificial Intelligence 39(3): 223–257.

    Article  Google Scholar 

  18. Breiman, L., J. Friedman, R. Olshen & C. Stone, 1984. Classification and regression trees. Wadsworth & Brooks, Pacific Groove.

    Google Scholar 

  19. Brodziak, J. & J. Link, 2002. Ecosystem-based fishery management: what is it and how can we do it? Bulletin of Marine Science 70(2): 589–611.

    Google Scholar 

  20. Brown, S. K., K. R. Buja, S. H. Jury, M. E. Monaco & A. Banner, 2000. Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine. North American Journal of Fisheries Management 20: 408–435.

    Article  Google Scholar 

  21. Butterworth, R., D. A. Simovici, G. S. Santos & L. Ohno-Machado, 2004. A greedy algorithm for supervised discretization. Journal of Biomedical Informatics 37(4): 285–292.

    PubMed  CAS  Article  Google Scholar 

  22. Chen, X., G. Li, B. Feng & S. Tian, 2009. Habitat suitability of chub mackerel (Scomber japonicus) in the East China Sea. Journal of Oceanography 65(1): 93–102.

    Article  Google Scholar 

  23. Chen, X., S. Tian, Y. Chen & B. Liu, 2010. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii)in the Northwest Pacific Ocean. Fishery Bulletin 108: 1–14.

    Google Scholar 

  24. Coad, B. W., 1995. Freshwater fishes of Iran. Acta Sci Nat Brno 29: 1–64.

    Google Scholar 

  25. Cohen, J., 1960. A coefficient of agreement for nominal scale. Educational and Psychological Measurement 20: 37–46.

    Article  Google Scholar 

  26. D’heygere, T., P. L. M. Goethals & N. De Pauw, 2003. Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecological Modelling 160(3): 291–300.

    Article  Google Scholar 

  27. Dakou, E., T. D’heygere, A. Dedecker, P. M. Goethals, M. Lazaridou-Dimitriadou & N. De Pauw, 2007. Decision tree models for prediction of macroinvertebrate taxa in the River Axios (Northern Greece). Aquatic Ecology 41(3): 399–411.

    Article  Google Scholar 

  28. Damalas, D., C. D. Maravelias, S. Katsanevakis, A. P. Karageorgis & C. Papaconstantinou, 2010. Seasonal abundance of non-commercial demersal fish in the eastern Mediterranean Sea in relation to hydrographic and sediment characteristics. Estuarine, Coastal and Shelf Science 89(1): 107–118.

    Article  Google Scholar 

  29. De’ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11): 3178–3192.

    Article  Google Scholar 

  30. Diaz, R. J. & R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891): 926–929.

    PubMed  CAS  Article  Google Scholar 

  31. Dom, B., W. Niblack & J. Sheinvald, 1989. Feature selection with stochastic complexity. In: Computer Vision and Pattern Recognition, 1989. Proceedings CVPR ‘89, IEEE Computer Society Conference on, 4–8 June 1989: 241–248.

  32. Džeroski, S., D. Demšar & J. Grbović, 2000. Predicting chemical parameters of river water quality from bioindicator data. Applied Intelligence 13(1): 7–17.

    Article  Google Scholar 

  33. Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC, M. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151.

    Article  Google Scholar 

  34. Falahatkar, B., H. Mohammadi & H. Noveirian, 2012. Effects of different starter diets on growth indices of Caspian kutum, Rutilus frisii kutum larvae. Iranian Journal of Fisheries Sciences 11(1): 28–36.

    Google Scholar 

  35. Faraway, J. & C. Chatfield, 1998. Time series forecasting with neural networks: a comparative study using the air line data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 47(2): 231–250.

    Article  Google Scholar 

  36. Fazli, H., D. Kor, M. Tavakoli & R. Daryanbourd, 2010. Seasonal distribution of bonyfish between 10 and 100 depth in southern Caspian Sea. In Fazli, H. (ed.), The 1st Nationa-Regional Conference on Ecology of the Caspian sea (FCECS2010), Sari, Iran, 2010. Iranian Fisheries Research Institute & Caspian Sea Ecology Center: 10–10.

  37. Fazli, H., G. Daryanabard, A. Salmanmahiny, S. Abdolmaleki, G. Bandani & M. Afraei Bandpei, 2012. Fingerling release program, biomass trend and evolution of the condition factor of Caspian kutum during the 1991–2011 period. Cybium 36(4): 545–550.

    Google Scholar 

  38. Fazli, H., M. A. Afraei Bandpei, R. Pourgholam & A. Roohi, 2013a. Long-term changes in fecundity of the Kutum, Rutilus frisii kutum Kamensky, 1901, in the Caspian Sea (Osteichthyes: Cyprinidae). Zoology in the Middle East 59(1): 51–58.

    Article  Google Scholar 

  39. Fazli, H., G. R. Daryanabard, S. Abdolmaleki & G. Bandani, 2013b. Stock management implication of Caspian kutum (Rutilus frisii kutum Kamensky, 1901) in Iranian waters of the Caspian Sea. ECOPERSIA 1(2): 179–190.

    Google Scholar 

  40. Fazli, H., D. Kor & G. Daryanabard, 2015. Spatial and temporal distribution of Kutum (Rutilus frisii kutum, Kamensky 1901) in Iranian waters of the Caspian Sea. Iranian Scientific Fisheries Journal 23(1): 63–74.

    Google Scholar 

  41. Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(01): 38–49.

    Article  Google Scholar 

  42. Firoozfar, A., E. N. Bromhead, A. P. Dykes & M. A. L. Neshaei, 2012. Southern Caspian Sea coasts, morphology, sediment characteristics, and sea level change. In: Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy 17: 12.

  43. Foley, M. M., B. S. Halpern, F. Micheli, M. H. Armsby, M. R. Caldwell, C. M. Crain, E. Prahler, N. Rohr, D. Sivas, M. W. Beck, M. H. Carr, L. B. Crowder, J. Emmett Duffy, S. D. Hacker, K. L. McLeod, S. R. Palumbi, C. H. Peterson, H. M. Regan, M. H. Ruckelshaus, P. A. Sandifer & R. S. Steneck, 2010. Guiding ecological principles for marine spatial planning. Marine Policy 34(5): 955–966.

    Article  Google Scholar 

  44. Frouin, R. & H. Murakami, 2007. Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. Journal of Oceanography 63(3): 493–503.

    Article  Google Scholar 

  45. Gevrey, M., I. Dimopoulos & S. Lek, 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling 160(3): 249–264.

    Article  Google Scholar 

  46. Goethals, P. L. M., 2005. Data driven development of predictive ecological models for benthic macroinvertebrates in rivers. University of Ghent.

  47. Goethals, P., A. Dedecker, W. Gabriels & N. De Pauw, 2006. Development and application of predictive river ecosystem models based on classification trees and artificial neural networks. In Recknagel, F. (ed.), Ecological informatics. Springer, Berlin: 151–167.

    Google Scholar 

  48. Goldberg, D. E., 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading.

    Google Scholar 

  49. Guisan, A., C. H. Graham, J. Elith, F. Huettmann & N. S. D. M. G, 2007. Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13(3): 332–340.

    Article  Google Scholar 

  50. Haghi Vayghan, A., H. Poorbagher, H. Taheri Shahraiyni, H. Fazli & H. Nasrollahzadeh Saravi, 2013. Suitability indices and habitat suitability index model of Caspian kutum (Rutilus frisii kutum) in the southern Caspian Sea. Aquatic Ecology 47(4): 441–451.

    Article  Google Scholar 

  51. Hall, M. A. & G. Holmes, 2003. Benchmarking attribute selection techniques for discrete class data mining. Knowledge and Data Engineering, IEEE Transactions on 15(6): 1437–1447.

    Article  Google Scholar 

  52. Hermosilla, C., F. Rocha & V. Valavanis, 2011. Assessing Octopus vulgaris distribution using presence-only model methods. Hydrobiologia 670(1): 35–47.

    CAS  Article  Google Scholar 

  53. Hoang, T. H., K. Lock, A. Mouton & P. L. M. Goethals, 2010. Application of classification trees and support vector machines to model the presence of macroinvertebrates in rivers in Vietnam. Ecological Informatics 5(2): 140–146.

    Article  Google Scholar 

  54. Holčik, J., 1995. New data on the ecology of kutum, Rutilus frisii (Nordmann, 1840) from the Caspian Sea. Ecology of Freshwater Fish 4(4): 175–179.

    Article  Google Scholar 

  55. Holland, J., 1975. Adaption in natural and artificial systems. The University of Michigan Press, Ann Arbor.

    Google Scholar 

  56. Karpinsky, M. G., 2010. Review: the Caspian Sea benthos: unique fauna and community formed under strong grazing pressure. Marine Pollution Bulletin 61(4–6): 156–161.

    PubMed  CAS  Article  Google Scholar 

  57. Katsanevakis, S., C. D. Maravelias, D. Damalas, A. P. Karageorgis, E. V. Tsitsika, C. Anagnostou & C. Papaconstantinou, 2009. Spatiotemporal distribution and habitat use of commercial demersal species in the eastern Mediterranean Sea. Fisheries Oceanography 18(6): 439–457.

    Article  Google Scholar 

  58. Kohavi, R. & G. H. John, 1997. Wrappers for feature subset selection. Artificial Intelligence 97(1–2): 273–324.

    Article  Google Scholar 

  59. Manel, S., H. C. Williams & S. J. Ormerod, 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38(5): 921–931.

    Article  Google Scholar 

  60. Mangel, M., L. M. Talbot, G. K. Meffe, M. T. Agardy, D. L. Alverson, J. Barlow, D. B. Botkin, G. Budowski, T. Clark, J. Cooke, R. H. Crozier, P. K. Dayton, D. L. Elder, C. W. Fowler, S. Funtowicz, J. Giske, R. J. Hofman, S. J. Holt, S. R. Kellert, L. A. Kimball, D. Ludgwig, K. Magnusson, B. S. Malayang, C. Mann, E. A. Norse, S. P. Northridge, W. F. Perrin, C. Perrings, R. M. Peterman, G. B. Rabb, H. A. Regier, J. E. Reynolds, K. Sherman, M. P. Sissenwine, T. D. Smith, A. Starfield, R. J. Taylor, M. F. Tillman, C. Toft, J. R. Twiss, J. Wilen & T. P. Young, 1996. Principles for the conservation of wild living resources. Ecological Applications 6(2): 338–362.

    Article  Google Scholar 

  61. Maravelias, C. D., E. V. Tsitsika & C. Papaconstantinou, 2007a. Evidence of Morocco dentex (Dentex maroccanus) distribution in the NE Mediterranean and relationships with environmental factors determined by generalized additive modelling. Fisheries Oceanography 16(3): 294–302.

    Article  Google Scholar 

  62. Maravelias, C. D., E. V. Tsitsika & C. Papaconstantinou, 2007b. Seasonal dynamics, environmental preferences and habitat selection of John Dory (Zeus faber). Estuarine, Coastal and Shelf Science 72(4): 703–710.

    Article  Google Scholar 

  63. Mouton, A. M., M. Schneider, J. Depestele, P. L. M. Goethals & N. De Pauw, 2007. Fish habitat modelling as a tool for river management. Ecological Engineering 29(3): 305–315.

    Article  Google Scholar 

  64. Nasrollahzadeh, A., 2010. Caspian Sea and its ecological challenges. Caspian Journal of Environment Science 8(1): 97–104.

    Google Scholar 

  65. Nasrollahzadeh, H. S., Z. B. Din, S. Y. Foong & A. Makhlough, 2008. Trophic status of the Iranian Caspian Sea based on water quality parameters and phytoplankton diversity. Continental Shelf Research 28(9): 1153–1165.

    Article  Google Scholar 

  66. Nikolić, B., D. Dodig, V. Jovanović, V. Oro & A. Marković, 2013. The effect of temperature and light (PAR) on the induction of Chla fluorescence in situ. 2.Diurnal changes in stinging nettle (Urtica dioica) and red currant (Ribes spp.). Botanica Serbica 37(2): 161–166.

    Google Scholar 

  67. Ouraji, H., K. Khalili, G. Ebrahimi & S. Jafarpour, 2011. Determination of the optimum transfer time of kutum (Rutilus frisii kutum) larvae from live food to artificial dry feed. Aquaculture International 19(4): 683–691.

    Article  Google Scholar 

  68. Pearce, J. L. & M. S. Boyce, 2006. Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43(3): 405–412.

    Article  Google Scholar 

  69. Peeters, F., R. Kipfer, D. Achermann, M. Hofer, W. Aeschbach-Hertig, U. Beyerle, D. M. Imboden, K. Rozanski & K. Fröhlich, 2000. Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep Sea Research Part I: Oceanographic Research Papers 47(4): 621–654.

    CAS  Article  Google Scholar 

  70. Pikitch, E., E. Santora, A. Babcock, A. Bakun, R. Bonfil, D. Conover, P. Dayton, P. Doukakis, D. Fluharty & B. Heheman, 2004. Ecosystem-based fishery management. Science 305: 346–347.

    PubMed  CAS  Article  Google Scholar 

  71. Quinlan, J. R., 1986. Induction of decision trees. Machine Learning 1(1): 81–106.

    Google Scholar 

  72. Quinlan, J. R., 1993. C4. 5: programs for machine learning, vol 1. Morgan kaufmann, Burlington.

  73. Recknagel, F., 2001. Applications of machine learning to ecological modelling. Ecological Modelling 146(1–3): 303–310.

    Article  Google Scholar 

  74. Sadeghi, R., R. Zarkami, K. Sabetraftar & P. Van Damme, 2012a. Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) at Selkeh Wildlife Refuge, Anzali wetland, Iran. Ecological Modelling 243: 8–17.

    Article  Google Scholar 

  75. Sadeghi, R., R. Zarkami, K. Sabetraftar & P. Van Damme, 2012b. Use of support vector machines (SVMs) to predict distribution of an invasive water fern Azolla filiculoides (Lam.) in Anzali wetland, southern Caspian Sea, Iran. Ecological Modelling 244: 117–126.

    Article  Google Scholar 

  76. Sadeghi, R., R. Zarkami, K. Sabetraftar & P. Van Damme, 2013. Application of genetic algorithm and greedy stepwise to select input variables in classification tree models for the prediction of habitat requirements of Azolla filiculoides (Lam.) in Anzali wetland, Iran. Ecological Modelling 251: 44–53.

    Article  Google Scholar 

  77. Sadeghi, R., R. Zarkami & P. Van Damme, 2014. Modelling habitat preference of an alien aquatic fern, Azolla filiculoides (Lam.), in Anzali wetland (Iran) using data-driven methods. Ecological Modelling 284: 1–9.

    Article  Google Scholar 

  78. Sharyati, A., 1993. Fishes of the Caspian Sea region. Iranian Fisheries Company, Iran, Tehran.

    Google Scholar 

  79. Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research 24(3): 151–158.

    Google Scholar 

  80. Shikhshabekov, M. M., 1979. The reproductive biology of kutum, Rutilus frisii kutum, the Asp, Aspius aspius, Vimba, Vimba vimba persa, and the Rudd, Scardinus erithrophethalmus, in the water of Daghestan. Ichthyology 19(3): 98–105.

    Google Scholar 

  81. Sparre, P. & S. C. Venema, 1998. Introduction to tropical fish stock assessment, Vol. 1. FAO Fisheries Technical Paper, Rome.

    Google Scholar 

  82. Sundblad, G., M. Härmä, A. Lappalainen, L. Urho & U. Bergström, 2009. Transferability of predictive fish distribution models in two coastal systems. Estuarine, Coastal and Shelf Science 83(1): 90–96.

    Article  Google Scholar 

  83. Taheri, M., M. Foshtomi, M. Noranian & S. Mira, 2012. Spatial distribution and biodiversity of macrofauna in the southeast of the Caspian Sea, Gorgan Bay in relation to environmental conditions. Ocean Science Journal 47(2): 113–122.

    Article  Google Scholar 

  84. Thrush, S. F. & P. K. Dayton, 2010. What can ecology contribute to ecosystem-based management? Annual Review of Marine Science 2(1): 419–441.

    PubMed  Article  Google Scholar 

  85. Tian, S., X. J. Chen, Y. Chen, L. Xu & X. Dai, 2009. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fisheries Research 95: 181–188.

    Article  Google Scholar 

  86. Valavanis, V. D., S. Georgakarakos, A. Kapantagakis, A. Palialexis & I. Katara, 2004. A GIS environmental modelling approach to essential fish habitat designation. Ecological Modelling 178(3–4): 417–427.

    Article  Google Scholar 

  87. Valavanis, V., G. Pierce, A. Zuur, A. Palialexis, A. Saveliev, I. Katara & J. Wang, 2008. Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. Hydrobiologia 612(1): 5–20.

    Article  Google Scholar 

  88. Valipour, A., A. Kanipour, M. KhadiviNiaMoghaddam & T. Valinassab, 2011. Kutum: jewel of the Caspian Sea, Vol. 1. Iranian Fisheries Research Organization, Tehran.

    Google Scholar 

  89. Vose, M. D., 1999. The simple genetic algorithm: Foundations and theory, Vol. 12. MIT Press Cambridge, MA.

    Google Scholar 

  90. Walczak, S. & N. Cerpa, 1999. Heuristic principles for the design of artificial neural networks. Information and Software Technology 41(2): 107–117.

    Article  Google Scholar 

  91. Witten, I. H., E. Frank & A. Mark, 2011. Data mining: practical machine learning tools and techniques, 3rd ed. Morgan Kaufmann, San Francisco.

    Google Scholar 

  92. Worm, B., R. Hilborn, J. K. Baum, T. A. Branch, J. S. Collie, C. Costello, M. J. Fogarty, E. A. Fulton, J. A. Hutchings, S. Jennings, O. P. Jensen, H. K. Lotze, P. M. Mace, T. R. McClanahan, C. Minto, S. R. Palumbi, A. M. Parma, D. Ricard, A. A. Rosenberg, R. Watson & D. Zeller, 2009. Rebuilding global fisheries. Science 325(5940): 578–585.

    PubMed  CAS  Article  Google Scholar 

  93. Yousefian, M. & H. Mosavi, 2008. Spawning of South Caspian kutum Rutilus frisii kutum in most migratory river of South Caspian Sea. Asian Journal of Animal and Veterinary Advances 3(6): 437–442.

    Article  Google Scholar 

  94. Zarkami, R., 2011. Application of classification trees-J48 to model the presence of roach (Rutilus rutilus) in rivers. Caspian Journal of Environmental Science (CJES) 9: 189–198.

    Google Scholar 

  95. Zarkami, R., P. Goethals & N. De Pauw, 2010. Use of classification tree methods to study the habitat requirements of tench (Tinca tinca) (L., 1758). Caspian Journal of Environment Science 8(1): 55–63.

    Google Scholar 

  96. Zarkami, R., R. Sadeghi & P. Goethals, 2012. Use of fish distribution modelling for river management. Ecological Modelling 230: 44–49.

    Article  Google Scholar 

  97. Zarkami, R., R. Sadeghi & P. Goethals, 2014. Modelling occurrence of roach “Rutilus rutilus” in streams. Aquatic Ecology 48(2): 161–177.

    Article  Google Scholar 

  98. Zuur, A. F., N. I. Elena & M. S. Graham, 2007. Analysing ecological data. Springer Science-Business Media, LLC, USA.

    Google Scholar 

Download references

Acknowledgments

The datasets were provided by the Caspian Sea Ecology Research Centre. The first author would like to thank Iranian national elite centre and Ministry of science, research, and technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rahmat Zarkami.

Additional information

Handling editor: Gideon Gal

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haghi Vayghan, A., Zarkami, R., Sadeghi, R. et al. Modeling habitat preferences of Caspian kutum, Rutilus frisii kutum (Kamensky, 1901) (Actinopterygii, Cypriniformes) in the Caspian Sea. Hydrobiologia 766, 103–119 (2016). https://doi.org/10.1007/s10750-015-2446-3

Download citation

Keywords

  • Caspian kutum
  • Caspian Sea
  • Habitat preferences
  • Habitat modeling