Advertisement

Hydrobiologia

, Volume 766, Issue 1, pp 1–15 | Cite as

Morphological and physiological traits of aquatic macrophytes respond to water chemistry in the Amazon Basin: an example of the genus Montrichardia Crueg (Araceae)

  • Aline Lopes
  • Pia Parolin
  • Maria Teresa Fernandez Piedade
Primary Research Paper

Abstract

Species composition and occurrence of aquatic macrophytes in the Amazon Basin are associated with the hydrology and geomorphology of the catchment area. Nonetheless, the distribution of the Neotropical genus Montrichardia in the Amazon floodplains remains unclear. Three taxa of the genus were described: Montrichardia linifera (Arr.) Schott (ML), associated with nutrient-rich rivers; Montrichardia arborescens (L.) Schott (MA) and M. arborescens var. aculeata (G. Mey.) Engl., growing in nutrient-poor rivers. We hypothesize that different taxa can be discriminated according to variation in density, morphology, physiology, and biomass along environmental gradients of water characteristics and soil fertility. Samples of 55 populations of Montrichardia were taken in rivers with contrasting water types in the Amazon Basin along a gradient of declining soil fertility from Western to Eastern Amazonia spanning about 2,500 km. Local phenotypic variations and discriminant analysis separated ML and MA with MA as subset of MA. Water chemistry influenced the distribution of taxa. The nutritional soil gradient at the basin level clearly explained the distribution of ML, but not that of MA. The distribution pattern of ML was similar to that of tree species in the Amazon Basin, with higher density in West Amazon.

Keywords

Neotropics Biomass Phenotypic plasticity Amazon floodplains 

Notes

Acknowledgments

This work was supported by INCT ADAPTA—Brazilian Ministry of Science, Technology and Innovation (CNPq/FAPEAM), Universal CNPq (14/2009; 14/2011), Pronex (CNPq/FAPEAM), and PELD MAUA (CNPq/FAPEAM). We are grateful to Naara Ferreira da Silva (INPA), Raissa Lagreca (UFRO), Pauline Pantoja (INPA), Conceição Lucia Costa, Celso R. Costa and Valdeney de A. Azevedo for their assistance in data collection. We appreciated the comments from two anonymous reviewers, Associate Editor Dr. Katya E. Kovalenko and Dr. John Ethan Householder who greatly improved the manuscript. We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for awarding Aline Lopes a Doctorate Grant and MAUA Research Group, Laboratório de Ecofisiologia e Evolução (LEEM) for logistical and technical support. Dr. A. Leyva helped with English editing of the manuscript.

References

  1. Amarante, C. B., R. C. S. Müller, K. G. F. Dantas, C. N. Alves, A. H. Müller & D. C. Palheta, 2010. Composição química e valor nutricional para grandes herbívoros das folhas e frutos de aninga (Montrichardia linifera, Araceae). Acta Amazonica 40: 729–736.CrossRefGoogle Scholar
  2. Barendregt, A. & A. M. F. Bio, 2003. Relevant variables to predict macrophytes communities in running waters. Ecological Modelling 160: 205–217.CrossRefGoogle Scholar
  3. Bolhár-Nordenkampf, H. R. & G. Öquist, 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In Hall, D. O., J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood & S. P. Long (eds), Photosynthesis and Production in a Changing Environment. Chapman and Hall, London: 93–206.Google Scholar
  4. Centro de Referencia em Informação Ambiental, CRIA, 2014. Species links [available on internet at: http://splink.cria.org.br/centralized_search?criaLANG=pt]. Accessed 10 Jan 2014.
  5. Crawford, R. M. M. & R. Braendle, 1996. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany 47(2): 145–159.CrossRefGoogle Scholar
  6. De Freitas, C. T., G. H. Shepard & M. T. F. Piedade, 2015. The floating forest: traditional knowledge and use of Matupá Vegetation Islands by Riverine peoples of the Central Amazon. Plos One 10: 0122542.Google Scholar
  7. De Oliveira, A. A. & D. Daly, 1999. Geographic distribution of tree species in the region of Manaus, Brazil: implications for regional diversity and conservation. Biodiversity and Conservation 8: 1245–1259.CrossRefGoogle Scholar
  8. De Simone, O., E. Müller, W. J. Junk & W. Schmidt, 2002. Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Functional Plant Biology 29: 1025–1035.CrossRefGoogle Scholar
  9. Demirezen, D., A. Aksoy & K. Uruc, 2007. Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae). Chemosphere 66: 553–557.PubMedCrossRefGoogle Scholar
  10. Dias, R. L., 2009. Software Comunidata 1.6. http://comunidata.sourceforge.net
  11. Driscoll, S. P., A. Prins, E. Olmos, K. J. Kunert & C. H. Foyer, 2006. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Journal of Experimental Botany 57(2): 381–390.PubMedCrossRefGoogle Scholar
  12. Empresa Brasileira de Pesquisa Agropecuária, Embrapa, 1979. Manual de métodos de análise de solo. Serviço Nacional de Levantamento e Conservação de Solos, Rio de Janeiro: 247 pp.Google Scholar
  13. Furch, K. & W. J. Junk, 1997. Physicochemical conditions in the floodplains. Ecological Studies 126: 69–108.CrossRefGoogle Scholar
  14. Gentry, A. H., 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1–34.CrossRefGoogle Scholar
  15. Gibernau, M., D. Barabé, D. Labat, P. Cerdan & A. Dejean, 2003. Reproductive biology of Montrichardia arborescens (Araceae) in French Guiana. Journal of Tropical Ecology 19: 103–107.CrossRefGoogle Scholar
  16. Harborne, J. B., 1989. Methods in Plant Biochemistry. Plant Phenolics, Vol. 1. Academic, London.Google Scholar
  17. Hendry, G. A. F. & A. H. Price, 1993. Stress indications: chlorophylls and carotenoids. In Hendry, G. A. F. & J. P. Prime (eds), Methods in Comparative Plant Ecology. A Laboratory Manual. Chapman and Hall, London: 148–152.CrossRefGoogle Scholar
  18. Henry-Silva, G. G. & A. F. M. Camargo, 2005. Interações ecologias entre as macrófitas aquáticas flutuantes Eichhornia crassipes e Pistia stratiotes. Hoehnea 32(3): 445–452.Google Scholar
  19. Hutchings, M. J. & C. S. Budd, 1981. Plant competition and its course through time. Bioscience 31(9): 640–645.CrossRefGoogle Scholar
  20. Jackson, M. B. & T. D. Colmer, 2005. Response and adaptation by plants to flooding stress. Annals of Botany 96(4): 501–505.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Junk, W. J., 1983. Ecology of swamps on the middle Amazon. In Gore, A. J. P. (ed.), Mires: Swamp, Bog, Fen and Moor. Regional Studies. Elsevier Scientific Publishing Company, Amsterdam: 269–294.Google Scholar
  22. Junk, W. J., 1989. Flood tolerance and tree distribution in Central Amazonian floodplains. In Holm-Nielsen, L. B., I. C. Nielsen & H. Balslev (eds), Tropical Forests: Botanical Dynamics, Speciation and Diversity. Academic, London: 47–64.Google Scholar
  23. Junk, W. J. & C. Howard-Williams, 1984. Ecology of aquatic macrophytes in Amazonia. In Sioli, H. (ed.), The Amazon – Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin. Monographie biologicae. Junk, Dordrecht: 270–293.Google Scholar
  24. Junk, W. J. & M. T. F. Piedade, 1997. Plant life in the floodplain with special reference to herbaceous plants. In Junk, W. J. (ed.), The Central Amazon Floodplain: Ecological Studies, Vol. 126. Springer, Berlin: 147–185.CrossRefGoogle Scholar
  25. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river–floodplain systems. In: Doge, D. P. (ed), proceedings of the international large river symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Science 106: 110–127.Google Scholar
  26. Koch, M. S., S. A. Schopmeyer, C. Kyhn-Hansen, C. J. Madden & J. S. Peters, 2007. Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany 86: 14–24.CrossRefGoogle Scholar
  27. Kozlowski, T. T., 1984. Plant responses to flooding of soil. Bioscience 34: 162–166.CrossRefGoogle Scholar
  28. Krause, G. H. & E. Weis, 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology 42: 313–349.CrossRefGoogle Scholar
  29. Lacey, E., 1986. Onset of reproduction in plants: size-versus age-dependency. Trends in Ecology and Evolution 1: 72–75.PubMedCrossRefGoogle Scholar
  30. Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14(2): 89–136.CrossRefGoogle Scholar
  31. Leigh, E. G., 1999. Tropical Forest Ecology: A View from the Barro Colorado Island. Oxford University Press, Oxford.Google Scholar
  32. Lichtenthaler, H. K., 2007. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynthesis Research 92(2): 163–179.PubMedCrossRefGoogle Scholar
  33. Lopes, A. 2014. Distribuição, ecofisiologia e capacidade adaptativa do gênero Montrichardia H. Crueg na Bacia Amazônica. Doctor Thesis, Intituto Nacional de Pesquisas da Amazônia, Manaus, 168 pp.Google Scholar
  34. Lopes, A., F. Wittmann, J. Schöngart & M. T. F. Piedade, 2014. Herbáceas aquáticas em seis igapós na Amazônia Central: composição e diversidade de gêneros. Revista Geogrográfica Acadêmica 8(1): 5–17.CrossRefGoogle Scholar
  35. Lucas, C., 2008. Within flood season variation in fruit consumption and seed dispersal by two characin fishes of the Amazon. Biotropica 40: 581–589.CrossRefGoogle Scholar
  36. Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 16(2): 94–100.CrossRefGoogle Scholar
  37. Madsen, T. V., P. Hahn & J. Johansen, 1998. Effect of inorganic carbon supply on the nitrogen requirement of two submerged macrophytes, Elodea canadensis and Callitriche cophocarpa. Aquatic Botany 62: 95–106.CrossRefGoogle Scholar
  38. Maxwell, K. & G. N. Johnson, 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51(345): 659–668.PubMedCrossRefGoogle Scholar
  39. Mayo, S. J., J. Bogner & P. C. Boyce, 1997. The Genera of Araceae. RBGKew Press, Londres.Google Scholar
  40. Meister, M. H. & H. R. Bolhàr Nordenkampf, 2001. Stomata imprints: a new and quick method to count stomata and epidermis cells. In Handbook of Plant Ecophysiology Techniques. Springer, Netherlands: 235–250.Google Scholar
  41. Melo, H. D., E. D. Castro, A. M. Soares, L. D. Melo & J. D. Alves, 2007. Alterações anatômicas e fisiológicas em Setaria anceps Stapf ex Massey e Paspalum paniculatum L. sob condições de déficit hídrico. Hoehnea 34(2): 145–153.CrossRefGoogle Scholar
  42. Mori, S. A., 1991. The Guyana lowland Xoristic province. Compte Rendu Sommaire des Seances de la Societe de Biogeographie 67: 67–75.Google Scholar
  43. Murphy, K. J., 2002. Plant communities and plant diversity in soft water lakes if northern Europe. Aquatic Botany 73: 287–324.CrossRefGoogle Scholar
  44. Nakazono, E. M. & M. T. F. Piedade, 2004. Biologia e ecologia do arumã, Ischnosiphon polyphyllus (Marantaceae), no arquipélago de Anavilhanas, Rio Negro, Amazônia Central. Revista Brasileira de Botânica 27(3): 421–428.Google Scholar
  45. Neiff, J. J. & A. S. G. Poi de Neiff, 2003. Connectivity processes as a basis for the management of aquatic plants. In Thomaz, S. & L. M. Bini (eds), Ecologia e Manejo de Macrófitas Aquáticas. Nupélia—Maringá (SC). Eduem, Maringá: 39–58.Google Scholar
  46. Pantoja, P. O., 2011. Comparação ecofisiológica e de atributos de crescimento das herbáceas aquáticas Montrichardia linifera (Arruda.) Schott e M. arborescens (L.) Schott em tipologias alagáveis contrastantes na Amazônia Central. Master Thesis, INPA, Manaus, 63 pp.Google Scholar
  47. Parent, C., N. Capelli & J. Dat, 2008. Reactive oxygen species, stress and cell death in plants. Comptes Rendus – Biologies 331: 255–261.PubMedCrossRefGoogle Scholar
  48. Parolin, P., 2001. Morphological and physiological adjustments to water logging and drought in seedlings of Amazonian floodplain trees. Oecologia 128: 326–335.PubMedCrossRefGoogle Scholar
  49. Parolin, P., 2009. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annals of Botany 103: 359–376.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Parolin, P., F. Wittmann & Ferreira, L. V. 2013. Take me to the river–seed dispersal in Amazonian floodplain. In New Frontiers in Tropical Biology: The Next 50 Years (A Joint Meeting of ATBC and OTS). ATBC, San Jose.Google Scholar
  51. Parolin, P., O. De Simone, K. Haase, D. Waldhoff, R. S. Ottenberger, U. Kuhn, J. Kesselmeier, W. Schmidt, M. T. F. Piedade & W. J. Junk, 2004. Central Amazon floodplain forests: tree survival in a pulsing system. The Botanical Review 70(3): 357–380.CrossRefGoogle Scholar
  52. Parolin, P., C. Lucas, M. T. F. Piedade & F. Wittmann, 2010. Drought responses of flood-tolerant trees in Amazonian floodplains. Annals of Botany 105: 129–139.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pezeshki, S. R., 2001. Wetland plant responses to soil flooding. Environmental and Experimental Botany 46(3): 299–312.CrossRefGoogle Scholar
  54. Piedade, M. T. F., W. J. Junk & S. P. Long, 1991. The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72: 1456–1463.CrossRefGoogle Scholar
  55. Piedade, M. T. F., W. J. Junk, S. A. D’Ângelo, F. Wittmann, J. Schöngart, K. M. D. N. Barbosa & A. Lopes, 2010. Aquatic herbaceous plants of the Amazon floodplains: state of the art and research needed. Acta Limnologica Brasiliensia 22(2): 165–178.CrossRefGoogle Scholar
  56. Pimenta, J. A., E. Bianchini & M. F. Medri, 1998. Adaptations to flooding by tropical trees: morphological and anatomical modifications. In: F.R. Scarano & A.C. Franco (eds). Ecophysiological strategies of xerophytic and amphibious plants in the Neotropics. Série Oecologia Brasiliensis 4: 154–176.Google Scholar
  57. Pitman, N. C. A., J. Terborgh, M. R. Silman, P. V. Nunêz, D. A. Neill, C. E. Ceron, W. A. Palacios & M. Aulestia, 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83: 3210–3224.CrossRefGoogle Scholar
  58. Portal, R. R., M. A. S. Lima, V. L. F. Luz, Y. S. L. Bataus & J. dos Reis, 2002. Espécies vegetais utilizadas na alimentação de Podocnemis unifilis, Troschel 1948 (Reptila, Testudinae, Pelomedusidae) na região do Pracauba - Amapá – Brasil. Ciência Animal Brasileira 3(1): 11–19.Google Scholar
  59. Prance, G. T., 1994. The use of phytogeographic data for conservation planning. In Forey, P. L., C. J. Humphries & R. I. Vane-Wright (eds), Systematics and Conservation Evaluation. Systematic Association Special, Vol. 50. Clarendon Press, Oxford: 145–163.Google Scholar
  60. Quesada, C. A., J. Lloyd, M. Schwarz, S. Patiño, T. R. Baker, C. Czimczik, N. M. Fyllas, L. Martinelli, G. B. Nardoto, J. Schmerler, A. J. B. Santos, M. G. Hodnett, R. Herrera, F. J. Luizão, A. Arneth, G. Lloyd, N. Dezzeo, I. Hilke, I. Kuhlmann, M. Raessler, W. A. Brand, H. Geilmann, J. O. Moraes Filho, F. P. Carvalho, R. N. Araujo Filho, J. E. Chaves, O. F. Cruz Junior, T. P. Pimentel & R. Paiva, 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7: 1515–1541.CrossRefGoogle Scholar
  61. Quesada, C. A., O. L. Phillips, M. Schwarz, C. I. Czimczik, T. R. Baker, S. Patiño, N. M. Fyllas, M. G. Hodnett, R. Herrera, S. Almeida, E. Alvarez Dávila, A. Arneth, L. Arroyo, K. J. Chao, N. Dezzeo, T. Erwin, A. di Fiore, N. Higuchi, E. Honorio Coronado, E. M. Jimenez, T. Killeen, A. T. Lezama, G. Lloyd, G. López-González, F. J. Luizão, Y. Malhi, A. Monteagudo, D. A. Neill, P. Núñez Vargas, R. Paiva, J. Peacock, M. C. Peñuela, A. Peña Cruz, N. Pitman, N. Priante Filho, A. Prieto, H. Ramírez, A. Rudas, R. Salomão, A. J. B. Santos, J. Schmerler, N. Silva, M. Silveira, R. Vásquez, I. Vieira, J. Terborgh & J. Lloyd, 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9: 2203–2246.CrossRefGoogle Scholar
  62. Riis, T., K. Sand-Jensen & O. Vestergaard, 2000. Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany 66: 255–272.CrossRefGoogle Scholar
  63. Schöngart, J., M. T. F. Piedade, F. Wittmann, W. J. Junk & M. Worbes, 2005. Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145(3): 454–461.PubMedCrossRefGoogle Scholar
  64. Silva, M. F. S., I. M. De Andrade & S. J. Mayo, 2012. Geometric morphometrics of leaf blade shape in Montrichardia linifera (Araceae) populations from the Rio Parnaíba Delta, north-east Brazil. Botanical Journal of the Linnean Society 170(4): 554–572.CrossRefGoogle Scholar
  65. Sioli, H., 1954. Betrachtungen über den Begriff der “Fruchtbarkeit” eines Gebietes anhand der Verhältnisse in Böden und Gewässern Amazoniens. Forsch. Fortscin. Berlin 28(3): 65–72.Google Scholar
  66. Squires, L. & A. V. D. Valk, 1992. Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Canadian Journal of Botany 70(9): 1860–1867.CrossRefGoogle Scholar
  67. Ter Steege, H., D. Sabatier, H. Castellanos, T. Van Andel, J. Duivenvoorden, A. A. de Oliveira, R. de Ek, R. Lilwah, P. Maas & S. Mori, 2000. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana shield. Journal of Tropical Ecology 16: 801–828.CrossRefGoogle Scholar
  68. Ter Steege, H., N. Pitman, D. Sabatier, H. Castellanos, P. Van der Hout, D. C. Daly, M. Silveira, O. L. Phillips, R. Vasquez, T. Van Andel, J. Duivenvoorden, A. A. De Oliveira, R. Ek, R. Lilwah, R. Thomas, J. Van Essen, C. Baider, P. Maas, S. Mori, J. Terborgh, P. V. Nunez, H. Mogollón & W. Morawetz, 2003. A spatial model of tree a-diversity and b-density for the Amazon region. Biodiversity and Conservation 12: 2255–2277.CrossRefGoogle Scholar
  69. Ter Steege, H., N. C. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque & R. Vásquez, 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443(7110): 444–447.PubMedCrossRefGoogle Scholar
  70. Ter Steege, H., N. C. Pitman, D. Sabatier, C. Baraloto, R. P. Salomão, J. E. Guevara & P. V. Fine, 2013. Hyperdominance in the Amazonian tree flora. Science 342(6156): 1243092.PubMedCrossRefGoogle Scholar
  71. Valladares, F. & U. L. Niinemets, 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237–257.CrossRefGoogle Scholar
  72. Whitmore, T. C., 1975. Tropical Rain Forests of the Far East. Clarendon Press, Oxford.Google Scholar
  73. Wittmann, F. & P. Parolin, 1999. Phenology of six tree species from Central Amazonian varzea. Ecotropica 5: 51–57.Google Scholar
  74. Wittmann, F., J. Schöngart, J. C. Montero, T. Motzer, W. J. Junk, M. T. F. Piedade & M. Worbes, 2006. Tree species composition and diversity gradients in white-water forests across the Amazon Basin. Journal of Biogeography 33(8): 1334–1347.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aline Lopes
    • 1
  • Pia Parolin
    • 2
  • Maria Teresa Fernandez Piedade
    • 3
  1. 1.Graduate Program in EcologyInstituto Nacional de Pesquisas da Amazônia/Grupo MAUA “Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas”ManausBrazil
  2. 2.Department of Plant Diversity, Klein FlottbekUniversity of HamburgHamburgGermany
  3. 3.Instituto Nacional de Pesquisas da AmazôniaCDAM/Grupo MAUA “Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas”ManausBrazil

Personalised recommendations