Skip to main content

Advertisement

Log in

Dissimilarity of phytoplankton assemblages in two connected tropical reservoirs: effects of water transportation and environmental filtering

  • PHYTOPLANKTON & SPATIAL GRADIENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To evaluate the importance of dispersal by water transportation in structuring phytoplankton community, we compared phytoplankton composition and succession between two connected tropical reservoirs: a large reservoir with a bottom outlet that periodically feeds a small reservoir via a 40 km open channel. Multivariate analysis was carried out on datasets of phytoplankton for exploring the relationship between phytoplankton and environmental variables. Differential survival of phytoplankton taxa during long channel transportation contributed to high dissimilarity of phytoplankton community between the two reservoirs. Local ecological filtering was mainly responsible for structuring the phytoplankton community with a few dominant functional groups in the large reservoir. Phytoplankton community succession in the large reservoir also showed a clear seasonal pattern. The community in the small reservoir had a more diverse functional group composition and did not show a clear seasonal succession because of strong hydrodynamic disturbance and phytoplankton inoculation with periodic water transportation. In conclusion, periodical transportation and mass effect by dispersal disturb succession and seasonal dynamics, and phytoplankton community assemblage depends on both environmental filtering (habitat selection) and dispersal in the small (receiving) reservoir. In addition, the dissimilarity of phytoplankton community between the connected waters was caused by both habitat difference and differential survival of phytoplankton taxa during transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Association, American Public Health, 1989. Standard Methods for the Examination of Water and Wastewater. American Water Works Association and Water Pollution Control Federation, Washington, DC.

    Google Scholar 

  • Avnimelech, Y., B. W. Troeger & L. W. Reed, 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216: 63–65.

    Article  CAS  PubMed  Google Scholar 

  • Becker, V., L. Caputo, J. Ordóñez, R. Marce, J. Armengol, L. O. Crossetti & V. L. M. Huszar, 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research 44: 3345–3354.

    Article  CAS  PubMed  Google Scholar 

  • Bergström, A., C. Bigler, U. Stensdotter & E. S. Lindström, 2008. Composition and dispersal of riverine and lake phytoplankton communities in connected systems with different water retention times. Freshwater Biology 53: 2520–2529.

    Article  Google Scholar 

  • Boehrer, B. & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46: 1–27.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Borics, G., I. Grigorszky, J. Padisák, F. A. R. Barbosa & Z. Z. Doma, 2005. Dinoflagellates from tropical Brazilian lakes with description of Peridinium brasiliense sp. nova. Algological Studies 118: 47–61.

    Article  Google Scholar 

  • Butterwick, C., S. I. Heaney & J. F. Talling, 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50: 291–300.

    Article  Google Scholar 

  • Coesel, P. F. M. & K. Wardenaar, 1990. Growth responses of planktonic desmid species in a temperature-light gradient. Freshwater Biology 23: 551–560.

    Article  Google Scholar 

  • Cottenie, K. & L. De Meester, 2004. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85: 114–119.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Elliott, J. A., 2010. The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16: 864–876.

    Article  Google Scholar 

  • Estrada, M. & E. Berdalet, 1997. Phytoplankton in a turbulent world. Scientia Marina 61: 125–140.

    Google Scholar 

  • Etienne, R. S. & D. Alonso, 2007. Neutral community theory: how stochasticity and dispersal-limitation can explain species coexistence. Journal of Statistical Physics 128: 485–510.

    Article  Google Scholar 

  • Han, B. P. & Z. W. Liu, 2012. Tropical and Sub-tropical Reservoir Limnology in China, Theory and Practice. Springer, Dordrecht.

    Book  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Howeth, J. G. & M. A. Leibold, 2010. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities. Ecology 91: 2727–2741.

    Article  PubMed  Google Scholar 

  • Hu, R., B. P. Han & L. Naselli-Flores, 2013. Comparing biological classifications of freshwater phytoplankton: a case study from south China. Hydrobiologia 701: 219–233.

    Article  Google Scholar 

  • Lewis, W. M., 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences 40: 1779–1787.

    Article  Google Scholar 

  • Leibold, M. A. & T. E. Miller, 2004. From Metapopulations to Metacommunities. In Hanski, I. & O. E. Gaggiotti (eds), Ecology, Genetics and Evolution of Metapopulations. Academic Press, San Diego: 133–150.

    Chapter  Google Scholar 

  • Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letter 10: 1170–1181.

    Article  Google Scholar 

  • Litchman, E., P. T. Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.

    Article  CAS  Google Scholar 

  • Litchman, E., K. F. Edwards, C. A. Klausmeier & M. K. Thomas, 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress series 470: 235–248.

    Article  Google Scholar 

  • Liu, J., J. Soininen, B. P. Han & S. J. Declerck, 2013. Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography 40: 2238–2248.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chrus, 2003. Equilibrium/steady-state concept in phytoplankton. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Padisák, J., E. Hajnal, L. Naselli-Flores, M. T. Dokulil, P. Nõges & T. Zohary, 2010. Convergence and divergence in organization of phytoplankton community under various of physical and biological control. Hydrobiologia 639: 205–220.

    Article  Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2015. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia. doi:10.1007/s10750-015-2259-4.

    Google Scholar 

  • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [avialble on internet at http://www.R-project.org/].

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369(370): 11–26.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825–846.

    Article  Google Scholar 

  • Salmaso, N., 2011. Interactions between nutrient availability and climatic fluctuations as determinants of the long-term phytoplankton community changes in Lake Garda, Northern Italy. Hydrobiologia 660: 59–68.

    Article  CAS  Google Scholar 

  • Sommer, U., 1989. Plankton Ecology: Succession in Plankton Community. Science Tech, Madison: 57–106.

    Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1996. Competition for phosphorus among planktonic desmids species in continuous-flow culture. Journal of Phycology 32: 939–948.

    Article  Google Scholar 

  • Tundisi, J. G. & M. Straškraba, 1999. Theoretical Reservoir Ecology and its Application. International Institute of Ecology, São Carlos. (Printed in Brazil).

    Google Scholar 

  • UtermÖhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vadadi-Fülöp, C., C. Sipkay, G. Mészáros & L. Hufnagel, 2012. Climate change and freshwater zooplankton: what does it boil down to? Aquatic Ecology 46: 501–519.

    Article  Google Scholar 

  • Verreydt, D., L. De Meester, E. Decaestecker, M. J. Villena, K. V. D. Gucht, P. Vannorelingen, W. Vyverman & S. A. J. Declerck, 2012. Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecology Letters 15: 218–226.

    Article  PubMed  Google Scholar 

  • Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192.

    Article  PubMed  Google Scholar 

  • Xiao, L. J., B. P. Han, Q. Q. Lin & L. M. Lei, 2007. Usage of flocculation in emergent control of algal bloom in drinking water supplying reservoir. Chinese Journal of Environmental Science 28: 2192–2197.

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by a grant from the cultivation and innovation fund of scientific research of Jinan University (No. 21612329), a grant for leading talent scientists of Guangdong Province to Dr Henri Dumont, and a grant from Chinese NSF (No. 31170437). We are grateful to Drs Ken Chen from Australia and Henri Dumont from Belgium for their comments on the manuscript. We also thank colleagues and students at the field station for their help with sampling.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Juan Xiao or Bo-Ping Han.

Additional information

Guest editors: Luigi Naselli-Flores & Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, LJ., Hu, R., Peng, L. et al. Dissimilarity of phytoplankton assemblages in two connected tropical reservoirs: effects of water transportation and environmental filtering. Hydrobiologia 764, 127–138 (2016). https://doi.org/10.1007/s10750-015-2400-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2400-4

Keywords

Navigation