Skip to main content
Log in

Predicting a range shift and range limits in an introduced tropical marine invertebrate using species distribution models

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A major goal of invasion biology is to predict range shifts and potential range limits of non-native species. Species distribution models (SDMs) are commonly used to achieve these goals, but the predictive accuracy of these models is rarely tested using natural range shifts. The barnacle Megabalanus coccopoma is native to the eastern tropical Pacific and has been introduced to a number of locations globally including the southeastern United States. During the unusually cold winter months of 2010, the range of M. coccopoma within the USA SE retracted 825 km. The ability of the SDM MaxEnt to accurately predict the range retraction and M. coccopomas range within the USA SE was tested using distributional data from before and after the range retraction. Three MaxEnt models were trained using data from the global range, the native range, and the USA SE introduced range. Only the model trained on data from the USA SE was able to accurately predict the entire extent of the range retraction and most known populations prior to the range retraction. Globally trained models may provide the most conservative estimates of potential distributions; however, niche shifts may limit the ability of these models to accurately predict range shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, J. M. & P. J. Edwards, 2010. Limits to the niche and range margins of alien species. Oikos 119: 1377–1386.

    Article  Google Scholar 

  • Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.

  • Araújo, M. B. & A. T. Peterson, 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539.

    Article  PubMed  Google Scholar 

  • Araújo, M. B., R. G. Pearson, W. Thuiller & M. Erhard, 2005. Validation of species–climate impact models under climate change. Global Change Biology 11: 1504–1513.

    Article  Google Scholar 

  • Breves-Ramos, A., H. P. Lavrado, A. O. R. Junqueira & S. H. G. Silva, 2005. Succession in rocky intertidal benthic communities in areas with different pollution levels at Guanabara Bay (RJ-Brazil). Brazilian Archives of Biology and Technology 48: 951–965.

    Article  Google Scholar 

  • Broennimann, O. & A. Guisan, 2008. Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters 4: 585–589.

    Article  PubMed Central  PubMed  Google Scholar 

  • Broennimann, O., U. A. Treie, H. Müller-Schärer, W. Thuiller, A. Peterson & A. Guisan, 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701–709.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. & M. Lomolino, 1998. Biogeography. Sinauer, Sunderland, MA.

    Google Scholar 

  • Canning-Clode, J., A. E. Fowler, J. E. Byers, J. T. Carlton & G. M. Ruiz, 2011. ‘Caribbean Creep’ chills out: climate change and marine invasive species. PLoS ONE 6: e29657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Celis, A., G. Rodriguez-Almaraz & F. Alvarez, 2007. Los cirripedios toracicos (Crustacea) de aguas someras de Tamaulipas, Mexico. Revista Mexicana de Biodiversidad 78: 325–337.

    Google Scholar 

  • Cohen, O. R., L. J. Walters & E. A. Hoffman, 2014. Clash of the titans: a multi-species invasion with high gene flow in the globally invasive titan acorn barnacle. Biological Invasions 16: 1743–1756.

    Article  Google Scholar 

  • Crickenberger, S., 2014. Range limits, range shifts, and lower thermal tolerance of the tropical barnacle Megabalanus coccopoma. PhD Thesis, pp 1–147.

  • Crickenberger, S. & A. Moran, 2013. Rapid range shift in an introduced tropical marine invertebrate. PLoS ONE 8: e78008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crisp, D., 1958. The spread of Elminius modestus Darwin in north-west Europe. Journal of the Marine Biological Association of the United Kingdom 37: 483–520.

    Article  Google Scholar 

  • de Rivera, C. E., B. P. Steves, P. W. Fofonoff, A. H. Hines & G. M. Ruiz, 2011. Potential for high-latitude marine invasions along western North America. Diversity and Distributions 17: 1198–1209.

    Article  Google Scholar 

  • DeWalt, S. J., J. S. Denslow & K. Ickes, 2004. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85: 471–483.

    Article  Google Scholar 

  • Easterling, D. R., G. A. Meehl, C. Parmesa, S. A. Changnon, T. R. Karl & L. O. Mearns, 2000. Climate extremes: observations, modeling, and impacts. Science 289: 2068–2074.

    Article  CAS  PubMed  Google Scholar 

  • Elith, J., M. Kearney & S. Phillips, 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1: 330–342.

    Article  Google Scholar 

  • Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee & C. J. Yates, 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57.

    Article  Google Scholar 

  • Farrapeira, C. M. R., A. V. O. M. Melo, D. F. Barbosa & K. M. E. Silva, 2007. Ship hull fouling in the Port of Recife, Pernambuco. Brazilian Journal of Oceanography 55: 207–221.

    Article  Google Scholar 

  • Fiedler, P. C. & L. D. Talley, 2006. Hydrography of the eastern tropical Pacific: a review. Progress in Oceanography 69: 143–180.

    Article  Google Scholar 

  • Firth, L. B., A. M. Knights & S. S. Bell, 2011. Air temperature and winter mortality: implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. Journal of Experimental Marine Biology and Ecology 400: 250–256.

    Article  Google Scholar 

  • Gilg, M. R., E. Lukaj, M. Abdulnour, M. Middlebrook, E. Gonzalez, R. Turner & R. Howard, 2010. Spatio-temporal settlement patterns of the non-native titan acorn barnacle, Megabalanus coccopoma, in northeastern Florida. Journal of Crustacean Biology 30: 146–150.

    Article  Google Scholar 

  • Grosholz, E. D., 1996. Contrasting rates of spread for introduced species in terrestrial and marine systems. Ecology 77: 1680–1686.

    Article  Google Scholar 

  • Henry, D. P. & P. A. McLaughlin, 1986. The recent species of Megabalanus (Cirripedia, Balanomorpha) with special emphasis on Balanus tintinnabulum (Linnaeus) sensu lato. Rijksmuseum van Natuurlijke Historie 235: 69.

    Google Scholar 

  • Hickling, R., D. B. Roy, J. K. Hill, R. Fox & C. D. Thomas, 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450–455.

    Article  Google Scholar 

  • Hilbish, T. J., F. P. Lima, P. M. Brannock, E. K. Fly, R. L. Rognstad & D. S. Wethey, 2012. Change and stasis in marine hybrid zones in response to climate warming. Journal of Biogeography 39: 676–687.

    Article  Google Scholar 

  • Jackson, G. A. & R. R. Strathmann, 1981. Larval mortality from offshore mixing as a link between precompetent and competent periods of development. American Naturalist 118: 16–26.

    Article  Google Scholar 

  • Jones, S. J., N. Mieszkowska & D. S. Wethey, 2009. Linking thermal tolerances and biogeography: Mytilus edulis (L.) at its southern limit on the east coast of the United States. Biological Bulletin 217: 73–85.

    PubMed  Google Scholar 

  • Kent, A., S. J. Hawkins & C. P. Doncaster, 2003. Population consequences of mutual attraction between settling and adult barnacles. Journal of Animal Ecology 72: 941–952.

    Article  Google Scholar 

  • Kerckhof, F., 2002. Barnacles (Cirripedia, Balanomorpha) in Belgian waters, an overview of the species and recent evolutions, with emphasis on exotic species. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen Biologie 72: 93–104. (Bulletin de l’Institut Royal des Sciences Naturelles de Belgique).

    Google Scholar 

  • Kerckhof, F. & A. Cattrijsse, 2001. Exotic Cirripedia (Balanomorpha) from buoys off the Belgian coast. Marine Biodiversity 31: 245–254.

    Google Scholar 

  • Kerckhof, F., J. Haelters & S. Degraer, 2010. The barnacles Chirona (Striatobalanus) amaryllis (Darwin 1854) and Megabalanus coccopoma (Darwin 1854) (Crustacea, Cirripedia): two invasive species new to tropical West African waters. African Journal of Marine Science 32: 265–268.

    Article  Google Scholar 

  • Kinlan, B. & A. Hastings, 2005. What exotic species tell us about rates of population spread and geographic range expansion. In Sax, D. F., J. J. Stachowicz & S. D. Gaines (eds), Species invasions: insights into ecology, evolution, and biogeography. Sinauer Associates, Sunderland, MA: 281–419.

    Google Scholar 

  • Lee, C. E. & M. A. Bell, 1999. Causes and consequences of recent freshwater invasions by saltwater animals. Trends in Ecology & Evolution 14: 284–288.

    Article  CAS  Google Scholar 

  • Lima, F. P., P. A. Ribeiro, N. Queiroz, R. Xavier, P. Tarroso, S. J. Hawkins & A. M. Santos, 2007. Modelling past and present geographical distribution of the marine gastropod Patella rustica as a tool for exploring responses to environmental change. Global Change Biology 13: 2065–2077.

    Article  Google Scholar 

  • Liu, C., M. White & G. Newell, 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778–789.

    Article  Google Scholar 

  • Medley, K. A., 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography 19: 122–133.

    Article  Google Scholar 

  • Merow, C., M. J. Smith & J. A. Silander, 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058–1069.

    Article  Google Scholar 

  • National Climate Data Center, 2010. 2009–2010 Cold Season. NOAA’s National Climatic Data Center, Asheville, NC.

    Google Scholar 

  • Newman, W. A. & R. R. McConnaughey, 1987. A tropical eastern Pacific barnacle, Megabalanus coccopoma (Darwin), in southern California, following El Niño 1982–83. Pacific Science 41: 31–36.

    Google Scholar 

  • Nilsson-Cantell, C., 1932. Revision der Sammlung rezenter Cirripedien des Naturhistorischen Museums in Basel. Verhandlungen der Naturforschenden Gesellschaft in Basel 42: 103–137.

    Google Scholar 

  • Park, I., S. J. DeWalt, E. Siemann & W. E. Rogers, 2012. Differences in cold hardiness between introduced populations of an invasive tree. Biological Invasions 14: 2029–2038.

    Article  Google Scholar 

  • Parmesan, C., S. Gaines, L. Gonzalez, D. M. Kaufman, J. Kingsolver, J. Townsend Peterson & R. Sagarin, 2005. Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108: 58–75.

    Article  Google Scholar 

  • Pearman, P. B., A. Guisan, O. Broennimann & C. F. Randin, 2008. Niche dynamics in space and time. Trends in Ecology & Evolution 23: 149–158.

    Article  Google Scholar 

  • Peterson, A. T., 2003. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology 78: 419–433.

  • Phillips, S. J. & M. Dudík, 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175.

    Article  Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick & S. Ferrier, 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19: 181–197.

    Article  PubMed  Google Scholar 

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey & M. G. Schlax, 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate 20: 5473–5496.

    Article  Google Scholar 

  • Roberts, J. J., B. D. Best, D. C. Dunn, E. A. Treml & P. N. Halpin, 2010. Marine Geospatial Ecology Tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C. Environmental Modelling & Software 25: 1197–1207.

    Article  Google Scholar 

  • Shanks, A. L. & G. L. Eckert, 2005. Population persistence of California Current fishes and benthic crustaceans: a marine drift paradox. Ecological Monographs 75: 505–524.

    Article  Google Scholar 

  • Silveira, N. G., R. C. C. L. Souza, F. C. Fernandes & E. P. Silva, 2007. Occurrence of Perna perna, Modiolus carvalhoi (Mollusca, Bivalvia, Mytilidae) and Megabalanus coccopoma (Crustacea, Cirripedia) off Areia Branca, Rio Grande do Norte state, Brazil. Biociências 14: 89–90.

    Google Scholar 

  • Simpson, J. J., 1984a. El Niño-induced onshore transport in the California Current during 1982–1983. Geophysical Research Letters 11: 233–236.

    Article  CAS  Google Scholar 

  • Simpson, J. J., 1984b. A simple model of the 1982–83 Californian “El Niño”. Geophysical Research Letters 11: 237–240.

    Article  Google Scholar 

  • Soberón, J. & A. T. Peterson, 2011. Ecological niche shifts and environmental space anisotropy: a cautionary note. Revista Mexicana de Biodiversidad 82: 1348–1355.

    Google Scholar 

  • Sorte, C. J. B., S. L. Williams & J. T. Carlton, 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography 19: 303–316.

    Article  Google Scholar 

  • Souza, R. C., M. Poleza, M. Máximo & C. Resgalla Jr, 2007. Utilização de larvas do cirripedia Megabalanus coccopoma (Darwin, 1854) como organismo-teste na avaliação de toxicidade aguda. Journal of the Brazilian Society of Ecotoxicology 2: 7–14.

    Article  Google Scholar 

  • Spalding, M. D., H. E. Fox, G. R. Allen, N. Davidson, Z. A. Ferdaña, M. Finlayson, B. S. Halpern, M. A. Jorge, A. Lombana & S. A. Lourie, 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57: 573–583.

    Article  Google Scholar 

  • Spinuzzi, S., K. R. Schneider, L. J. Walters, W. S. Yuan & E. A. Hoffman, 2013. Tracking the distribution of non-native marine invertebrates (Mytella charruana, Perna viridis and Megabalanus coccopoma) along the south-eastern USA. Marine Biodiversity Records 6: e55.

    Article  Google Scholar 

  • Stark, J. D., C. J. Donlon, M. J. Martin & M. E. McCulloch, 2007. OSTIA: an operational, high-resolution, real-time, global sea surface temperature analysis system. In: Proceedings of OCEANS 2007 - Europe. doi:10.1109/OCEANSE.2007.4302251.

  • Széchy, M. T. M. & E. J. Paula, 2000. Padrões estruturais quantitativos de bancos de Sargassum (Phaeophyta, Fucales) do litoral dos estados do Rio de Janeiro e São Paulo, Brasil. Revista Brasileira de Botânica 23: 121–132.

    Google Scholar 

  • Torchin, M. E., K. D. Lafferty, A. P. Dobson, V. J. McKenzie & A. M. Kuris, 2003. Introduced species and their missing parasites. Nature 421: 628–630.

    Article  CAS  PubMed  Google Scholar 

  • Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F. Mineur & O. De Clerck, 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21: 272–281.

    Article  Google Scholar 

  • Verbruggen, H., 2012a. RasterTools: moveCoordinatesToClosestDataPixel.jar version 1.03 [available on internet at http://www.phycoweb.net/software].

  • Verbruggen, H., 2012b. RasterTools: applymask.jar version 1.03 [available on internet at http://www.phycoweb.net/software].

  • Wolff, W. J., 2005. Non-indigenous marine and estuarine species in The Netherlands. Zoologische Mededelingen 79: 1–116.

    Google Scholar 

  • Woodin, S. A., T. J. Hilbish, B. Helmuth, S. J. Jones & D. S. Wethey, 2013. Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail. Ecology and Evolution 3: 3334–3346.

    PubMed Central  PubMed  Google Scholar 

  • Yamaguchi, T., R. E. Prabowo, Y. Ohshiro, T. Shimono, D. Jones, H. Kawai, M. Otani, A. Oshino, S. Inagawa & T. Akaya, 2009. The introduction to Japan of the Titan barnacle, Megabalanus coccopoma (Darwin, 1854) (Cirripedia: Balanomorpha) and the role of shipping in its translocation. Biofouling 25: 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Young, P. S., 2000. Cirripedia Thoracica (Crustacea) collected during the “Campagne de La Calypso (1961–1962)” from the Atlantic shelf of South America. Zoosystema 22: 85–100.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the staffs at GTMNERR, Sapleo NERR, ACE Basin NERR, and J. Crickenberger for assistance with sampling. Comments from Amy Moran and two anonymous reviewers significantly improved this manuscript. This research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration to SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Crickenberger.

Additional information

Handling editor: John Havel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crickenberger, S. Predicting a range shift and range limits in an introduced tropical marine invertebrate using species distribution models. Hydrobiologia 763, 193–205 (2016). https://doi.org/10.1007/s10750-015-2376-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2376-0

Keywords

Navigation