Skip to main content

Improved modelling of the impacts of sea level rise on coastal wetland plant communities

Abstract

This study presents an enhanced methodology for modelling the impacts of sea level rise on coastal wetlands. The tool integrates dGPS-calibrated LiDAR data, isostatic uplift and sediment accretion rates to predict the location and extent of plant communities at three non-contiguous micro-topographical coastal wetlands in Estonia by 2100 in response to global sea level rise. Scenarios were run including sediment accretion, elevated sediment accretion and then discounting sediment accretion and dGPS calibration for comparison. Results showed an increase in surface elevation (related to sediment accretion and isostatic uplift) resulting in a decrease in local sea level in the majority of sites and scenarios in the north of the country, although a rise in local sea level is predicted in sites with limited allochthonous sediment supply, predominantly impacting higher elevation plant communities. Wetlands situated on the west coast are likely to maintain equilibrium with sea level as a result of lower sedimentation and isostatic uplift than more northerly sites. This study shows that dGPS-calibrated LiDAR data and sediment accretion are essential to maintain model validity in Baltic coastal wetlands due to their low relief and could considerably improve current sea level rise impact models for other regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aitken, S., S. Yeaman, J. Holliday, T. Wang & S. Curtis-McLane, 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1(1): 95–111.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allen, J., 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19(12): 1155–1231.

    Article  Google Scholar 

  3. Allen, J. & K. Pye, 1998. Saltmarshes: Morphodynamics, Conservation and Engineering Significance. Cambridge University Press, Cambridge.

    Google Scholar 

  4. Barbier, E., S. Hacker, C. Kennedy, E. Koch, A. Stier & B. Silliman, 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  5. Bellafiore, D., M. Gezzo, D. Tagliapietra & G. Umgiesser, 2014. Climate change and artificial barrier effects on the Venice Lagoon: inundation dynamics of salt marshes and implications for halophytes distribution. Ocean and Coastal Management 100: 101–115.

    Article  Google Scholar 

  6. Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner & I. M. Held, 2010. Modelled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327: 454–458.

    CAS  Article  PubMed  Google Scholar 

  7. Bertrand, R., J. Lenoir, C. Piedallu, G. Riofrio-Dillon, P. de Ruffray, C. Vidal, J. Pierrat & J. Gegout, 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479: 517–520.

    CAS  Article  PubMed  Google Scholar 

  8. Burnside, N., C. Joyce, E. Puurman & D. Scott, 2007. Use of vegetation classification and plant indicators to assess grazing abandonment in Estonian coastal wetlands. Journal of Vegetation Science 18: 645–654.

    Article  Google Scholar 

  9. Burnside, N. & S. Waite, 2011. Predictive modelling of biogeographical phenomena. In Millington, A., M. Blumler & U. Schikhoff (eds), The SAGE handbook of biogeography. SAGE Publications Ltd, New York.

    Google Scholar 

  10. Butzeck, C., A. Eschenbach, A. Grongroft, K. Hansen, S. Nolte & K. Jensen, 2015. Sediment deposition and accretion rates in tidal marshes are highly variable along estuarine salinity and flooding gradient. Estuaries and Coasts 38: 434–450.

    CAS  Article  Google Scholar 

  11. Chust, G., I. Galparsoro, A. Borja, J. Franco & A. Uriarte, 2008. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multispectral imagery. Estuarine, Coastal and Shelf Science 78: 633–643.

    Article  Google Scholar 

  12. Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo & M. Machmuller, 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers of the Ecological Environment 7(2): 73–78.

    Article  Google Scholar 

  13. Cutini, M., E. Agostinelli, T. Acosta & J. Molina, 2010. Coastal salt marsh zonation in Tyrrhenian central Italy and its relationship with other Mediterranean wetlands. Botanica Italiana 144: 1–11.

    Google Scholar 

  14. Dullinger, S., T. Dirnböck & G. Grabherr, 2004. Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. Journal of Ecology 92(2): 241–252.

    Article  Google Scholar 

  15. EC habitat directive 92/43/EEC http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1992L0043:20070101:EN:PDF.

  16. Ellenberg, H., 1988. Vegetation ecology of central Europe. Cambridge University Press, Cambridge.

    Google Scholar 

  17. Eronen, M., G. Glückert, L. Hatakka, O. van de Plassche, J. van der Plicht & P. Rantala, 2001. Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW Finland based on studies of isolation contacts. Boreas 30: 17–30.

    Article  Google Scholar 

  18. Estonian Meteorological and Hydrological Institute (EMHI) 2012. Monthly and Annual Summaries of Precipitation and Sea Level. http://www.emhi.ee/index.php?ide=6 .Accessed February 2012.

  19. Franklin, J., 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19(4): 474–499.

    Article  Google Scholar 

  20. French, J., 2006. Tidal marsh sedimentation and resilience to environmental change: exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Marine Geology 235: 119–136.

    Article  Google Scholar 

  21. Friedrichs, C. & J. Perry, 2001. Tidal Salt Marsh Morphodynamics: A Synthesis. Journal of Coastal Research 27: 7–37.

    Google Scholar 

  22. Gedan, K., M. Kirwan, E. Wolanski, E. Barbier & B. Silliman, 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29.

    Article  Google Scholar 

  23. Gesch, D., 2009. Analysis of Lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. Journal of Coastal Research 53: 49–58.

    Article  Google Scholar 

  24. Hilyer, R. & M. Silman, 2010. Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Global Change Biology 16(2): 3205–3214.

    Article  Google Scholar 

  25. Hopkinson, C., W. Cai & X. Hu, 2012. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability 4(2): 186–194.

    Article  Google Scholar 

  26. IPCC, 2013. Climate change 2013: the physical science basis. Cambridge University Press, Cambridge.

    Google Scholar 

  27. Isacch, J. P., C. S. B. Costa, L. Rodríguez-Gallego, D. Conde, M. Escapa, D. A. Gagliardini & O. Iribarne, 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south–west Atlantic coast. Journal of Biogeography 33: 888–900.

    Article  Google Scholar 

  28. Kirwan, M. & S. Temmerman, 2009. Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews 28(17–18): 1801–1808.

    Article  Google Scholar 

  29. Kolker, A., S. Goodbred, S. Hameed & J. Cochran, 2009. High resolution records of the response of coastal wetland systems to long term and short term sea level variability. Estuarine, Coastal and Shelf Science 84(4): 493–508.

    CAS  Article  Google Scholar 

  30. Kont, A., J. Jaagus, R. Aunap, U. Ratas & R. Rivis, 2008. Implications of sea-level rise for Estonia. Journal of Coastal Research 24(2): 423–431.

    Article  Google Scholar 

  31. Landis, J. R. & G. G. Koch, 1977. The measurement of observer agreement for categorical data. Biometrics 33: 159–174.

    CAS  Article  PubMed  Google Scholar 

  32. McFadden, L., T. Spencer & R. Nicholls, 2007. Broad-scale modelling of coastal wetlands: what is required? Hydrobiologia 577: 5–15.

    Article  Google Scholar 

  33. Moeslund, J., L. Arge, P. Bocher, B. Nygaard & J. Svenning, 2011. Geographically comprehensive assessment of salt meadow vegetation–elevation relations using LiDAR. Wetlands 31(3): 471–482.

    Article  Google Scholar 

  34. Moffett, K., S. Gorelick, R. McLaren & E. Sudicky, 2012. Salt marsh ecohydrological zonation due to heterogeneous vegetation–groundwater–surface water interactions. Water Resources Research 48: W02516.

    Article  Google Scholar 

  35. Moffett, K., D. Robinson & S. Gorelick, 2010. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity and topography. Ecosystems 13: 1287–1302.

    CAS  Article  Google Scholar 

  36. Morris, J., D. Porter, M. Neet, P. Noble, L. Schmidt, L. Lapine & J. Jensen, 2005. Integrating LiDAR elevation data, multispectral imagery and neural network modelling for marsh characterisation. International Journal of Remote Sensing 26(23): 5221–5234.

    Article  Google Scholar 

  37. Mudd, S., S. Howell & J. Morris, 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82(3): 377–389.

    CAS  Article  Google Scholar 

  38. Nicholls, R. & A. Cazenave, 2010. Sea-level rise and its impact on coastal zones. Science 328(5985): 1517–1520.

    CAS  Article  PubMed  Google Scholar 

  39. Nolte, S., E. Koppenaal, P. Esselink, K. Dijkema, M. Schuerch, A. V. De Groot, J. Bakker & S. Temmerman, 2013. Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies. Journal of Coastal Conservation 17: 301–325.

    Article  Google Scholar 

  40. Nottage, A. & P. Robertson, 2005. The saltmarsh creation handbook: a project managers guide to the creation of saltmarsh and intertidal mudflat. RSPB, UK.

    Google Scholar 

  41. Pennings, S., E. Selig, L. Houser & M. Bertness, 2003. Geographic variation in positive and negative interactions among salt marsh plants. Ecology 84(6): 1527–1538.

    Article  Google Scholar 

  42. Poulter, B. & P. Halpin, 2008. Raster modelling of coastal flooding from sea level rise. International Journal of Geographic Information Science 22(2): 167–182.

    Article  Google Scholar 

  43. Puurmann, E. & U. Ratas, 1998. The formation, vegetation and management of sea shore grasslands in west Estonia. In Joyce, C. & M. Wade (eds), European wet grasslands: biodiversity, management and restoration. Wiley, Chichester: 97–110.

    Google Scholar 

  44. Rodwell, J., 1992. British plant communities, Vol. III. Cambridge University Press, Cambridge.

    Google Scholar 

  45. Rozynski, G. & Z. Pruszak, 2010. Long term rise of storminess of the Baltic Sea near Poland; possible origin and consequences. Ocean Engineering 37: 186–199.

    Article  Google Scholar 

  46. Sadro, S., M. Gastil-Buhl & J. Melack, 2007. Characterising patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tide fluctuations. Remote Sensing of the Environment 110: 226–239.

    Article  Google Scholar 

  47. Schuerch, M., J. Rapaglia, V. Liebetrau, A. Vafeidis & K. Reise, 2012. Salt marsh accretion and storm tide variation: an example from a barrier island in the North Sea. Estuaries and Coasts 35: 486–500.

    CAS  Article  Google Scholar 

  48. Schuerch, M., A. Vafeidis, T. Slawig & S. Temmerman, 2013. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. Journal of Geophysical Research 118: 84–96.

    Google Scholar 

  49. Schindler, M., V. Karius, A. Arns, M. Deicke & H. von Eynatten, 2014. Measuring sediment deposition and accretion on anthropogenic marshland – part II: the adaptation capacity of the North Frisian Halligen to sea level rise. Estuarine, Coastal and Shelf Science 151(5): 246–255.

    CAS  Article  Google Scholar 

  50. Stratonovitch, P., J. Storkey & M. Semenov, 2012. A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Global Change Biology 18(6): 2071–2080.

    Article  Google Scholar 

  51. Suchrow, S. & K. Jensen, 2010. Plant species responses to an elevational gradient in German North Sea salt marshes. Wetlands 30: 735–746.

    Article  Google Scholar 

  52. Suursaar, Ü., A. Kont, J. Jaagus, K. Orviku, U. Ratas, R. Rivis & T. Kullas, 2006. SLR scenarios induced by climate change, and their consequences for the Estonian seacoast. Risk analysis IV: Fourth International Conference on Computer Simulation in Risk Analysis and Hazard Mitigation: International conference on computer simulation in risk analysis and hazard mitigation. WIT Press, USA: 333–343.

  53. Suursaar, U., T. Kullas & M. Otsmann, 2001. A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea. Continental Shelf Research 22: 2001–2019.

    Article  Google Scholar 

  54. Tsompanglou, K., I. Croudace, H. Birch & M. Collins, 2012. Geochemical and radiochronological evidence of North Sea storm surges in salt marsh cores from The Wash embayment (UK). The Holocene 21(2): 225–236.

    Article  Google Scholar 

  55. Tweel, A. & E. Turner, 2014. Contribution of tropical cyclones to the sediment budget for coastal wetlands in Louisiana, USA. Landscape Ecology 29(6): 1083–1094.

    Article  Google Scholar 

  56. Vallner, L., H. Sildvee & A. Torim, 1988. Recent crustal movements in Estonia. Journal of Geodynamics 9: 215–223.

    Article  Google Scholar 

  57. Ward, R. 2012. Landscape and ecological modelling: development of a plant community prediction tool for Estonian coastal wetlands. Doctoral Thesis, University of Brighton (unpublished).

  58. Ward, R., N. Burnside, C. Joyce & K. Sepp, 2010. A study into the effects of micro-topography and edaphic factors on vegetation community structure. In: Future Landscape Ecology. IALEUK, UK: 32–36.

  59. Ward, R., N. Burnside, C. Joyce & K. Sepp, 2013. The use of medium point density LiDAR elevation data to determine plant community types in Baltic coastal wetlands. Ecological Indicators 33: 96–104.

    Article  Google Scholar 

  60. Ward, R., P. A. Teasdale, N. Burnside, C. Joyce & K. Sepp, 2014. Recent rates of sedimentation on irregularly flooded Boreal Baltic coastal wetlands: responses to recent changes in sea level. Geomorphology 217: 61–72.

    Article  Google Scholar 

  61. Webb, E., D. Friess, K. Krauss, D. Cahoon, G. Guntenspergen & J. Phelps, 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  62. Weisse, R., D. Bellafiore, M. Menendez, F. Mendez, R. Nicholls, G. Umgiesser & P. Willems, 2014. Changing extreme sea levels along European coasts. Coastal Engineering 87: 4–14.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded, in part, by the University of Brighton. This research was also supported by the European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa, Estonia; and the Estonian Land Board.

We would also like to thank Henri Järv, Tiina Järv, Samuel Bastable, Darren Ward, Taaniel Sepp, Martin Leppik, Kuldar Kuusik, Mae-Liis Sepp, Triin Jaagus and the staff of the Matsalu National Park and the Silma Nature Reserve.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. D. Ward.

Additional information

Guest editors: Pierluigi Viaroli, Marco Bartoli & Jan Vymazal / Wetlands Biodiversity and Processes: Tools for Management and Conservation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ward, R.D., Burnside, N.G., Joyce, C.B. et al. Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia 774, 203–216 (2016). https://doi.org/10.1007/s10750-015-2374-2

Download citation

Keywords

  • Coastal wetlands
  • Climate change impacts
  • Sea level rise modelling tool
  • LiDAR
  • Coastal plant communities