Hydrobiologia

, Volume 763, Issue 1, pp 109–124 | Cite as

Tracking management-related water quality alterations by phytoplankton assemblages in a tropical reservoir

Primary Research Paper

Abstract

Water quality improvement and suppression of cyanobacterial blooms were planned in a eutrophic reservoir in southern China through ecological engineering measures from 2006 to 2011. This consisted in (i) a hydraulic resetting of inflows and outflows to increase the distance between inlet and outlet and the water residence time in the reservoir, and in (ii) the installation of floating frames hosting wetland vegetation to promote an alteration in phytoplankton composition. The environmental changes were therefore followed through the analysis of biotic responses in phytoplankton assemblages. Ecological engineering was effective in reducing phytoplankton total biomass, in re-establishing more diversified phytoplankton assemblages and in avoiding cyanobacterial blooms. These changes may be considered as an improvement of the reservoir water quality. However, trophic state parameters and the dynamics of dominant species were not sensitive enough in describing the environmental changes that had occurred when the eco-engineering measures were implemented. These were more effectively tracked by the dynamics followed by phytoplankton Morpho-Functional-Groups and by their classification based on Competitors, Stress tolerants and Ruderals strategies. Although providing immediate positive effects, the eco-engineering was temporally limited, highlighting the importance of constant management in the context of long-term oriented remediation techniques.

Keywords

Phytoplankton Morpho-functional groups C–S–R-model Generalized additive modelling Ecological engineering Reservoir 

References

  1. Abonyi, A., M. Leitão, A. Lançon & J. Padisák, 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698: 233–249.CrossRefGoogle Scholar
  2. Abonyi, A., M. Laitão, I. Stankovic, G. Borics, G. Várbíró & J. Padisák, 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecological Indicators 46: 11–22.CrossRefGoogle Scholar
  3. American Public Health Association, 2012. Standard Methods for the Examination of Water and Wastewater, 22nd edn. American Water Works Association and Water Pollution Control Federation, Washington, DC, USA: 1360 pp.Google Scholar
  4. Anderson, D. M., P. M. Glibert & J. M. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726.CrossRefGoogle Scholar
  5. Antenucci, J. A., A. N. Ghadouani, M. I. Burford & J. O. Romero, 2005. The long-term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir. Freshwater Biology 50: 1081–1093.CrossRefGoogle Scholar
  6. Bonnet, M. P. & M. Poulin, 2002. Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance. Ecological Modelling 156: 93–112.CrossRefGoogle Scholar
  7. Brookes, J. D., R. H. Regel & G. G. Ganf, 2003. Changes in the photo-chemistry of Microcystis aeruginosa in response to light and mixing. New Phytologist 158: 151–164.CrossRefGoogle Scholar
  8. Burger, D. F., D. P. Hamilton & C. A. Pilditch, 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecological Modelling 211: 411–423.CrossRefGoogle Scholar
  9. Cirés, S., L. Wormer, R. Agha & A. Quesada, 2013. Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. Journal of Plankton Research 35(6): 1254–1266.CrossRefGoogle Scholar
  10. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a “biological effects” study. Marine Ecology – Progress Series 46: 213–226.CrossRefGoogle Scholar
  11. Cole, G. A., 1994. Textbook of Limnology. Waveland Press, Long Grove, IL: 421.Google Scholar
  12. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder & M. Lürling, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.CrossRefGoogle Scholar
  13. Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.CrossRefGoogle Scholar
  14. Fee, E. J., 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: implications for primary production estimates. Limnology and Oceanography 21(6): 767–783.CrossRefGoogle Scholar
  15. Geider, R. J., 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytologist 106(1): 1–34.CrossRefGoogle Scholar
  16. George, D. G., J. F. Talling & E. Rigg, 2000. Factors influencing the temporal coherence of five lakes in the English Lake District. Freshwater Biology 43: 449–461.CrossRefGoogle Scholar
  17. Goldyn, R., T. Joniak, K. Kowalczewska-Madura & A. Kozak, 2003. Trophic state of a lowland reservoir during 10 years after restoration. Hydrobiologia 506–509: 759–765.CrossRefGoogle Scholar
  18. Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169–1194.CrossRefGoogle Scholar
  19. Gross, E. M., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions. Hydrobiologia 584: 77–88.CrossRefGoogle Scholar
  20. Guiry, M. D. & G. M. Guiry, 2013. AlgaeBase. World-wide Electronic Publication. National University of Ireland, Galway. http://www.algaebase.org; searched on 20 November 2013.
  21. Gulati, R. D., L. M. Dionisio Pires & E. Van Donk, 2008. Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica – Ecology and Management of Inland Waters 38: 233–247.CrossRefGoogle Scholar
  22. Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.CrossRefGoogle Scholar
  23. Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.CrossRefGoogle Scholar
  24. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  25. Hu, R., B. Han & L. Naselli-Flores, 2013. Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia 701: 219–233.CrossRefGoogle Scholar
  26. Huszar, V. L. M. & N. F. Caraco, 1998. The relationship between phytoplankton composition and physical–chemical variables: a comparison of taxonomic and morphological–functional descriptors in six temperate lakes. Freshwater Biology 40: 679–696.CrossRefGoogle Scholar
  27. Ibelings, B. W., R. Portielje, H. E. R. R. Lammens, R. Noordhuis, M. S. van den Berg, W. Joosse & M. L. Meijer, 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10: 4–16.CrossRefGoogle Scholar
  28. Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318.CrossRefGoogle Scholar
  29. Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.CrossRefGoogle Scholar
  30. James, R. T., K. O’Dell & V. H. Smith, 1994. Water quality trends in Lake Tohopekaliga, Florida, USA: responses to watershed management. Journal of the American Water Resources Association 30: 531–546.CrossRefGoogle Scholar
  31. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Memorie dell’ Istituto Italiano di Idrobiologia 48: 127–148.Google Scholar
  32. Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. Branco, V. Huszar & F. Scasso, 2005a. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. CRC Press, Boca Raton: 341–359.Google Scholar
  33. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Köhler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005b. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  34. Jugnia, L. B., D. Debroas, J. C. Romagoux & J. Devaux, 2004. Initial results of remediation activities to restore hypereutrophic Villerest Reservoir (Roanne, France). Lakes and Reservoirs: Research and Management 9: 109–117.CrossRefGoogle Scholar
  35. Kosten, S., G. Lacerot, E. Jeppesen, D. Da Motta Marques, E. H. van Nes, N. Mazzeo & M. Scheffer, 2009. Effects of submerged vegetation on water clarity across climates. Ecosystems 12: 1117–1129.CrossRefGoogle Scholar
  36. Krienitz, L., 2009. Algae. In Likens, Gene. E. (ed.), Encyclopedia of Inland Waters, Vol. 1. Academic Press, Oxford: 103–113.CrossRefGoogle Scholar
  37. Kruskal, J. B. & M. Wish, 1978. Multidimensional Scaling. Sage Publications, Beverly Hills and London: 93.Google Scholar
  38. Lewis, W. M., 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Research and Management 5: 35–48.CrossRefGoogle Scholar
  39. Li, Q. H., 2008. The Effects of Ecotechnological Engineering on Improving Water Quality and the Dynamical Characteristics of Phytoplankton in Dajingshan Reservoir [D]. PhD thesis. Jinan University, Guangzhou: 182 pp.Google Scholar
  40. Li, Q. H. & B. P. Han, 2007. Structure and dynamics of phytoplankton community based CCA analysis in a pumped storage reservoir. Acta Ecologia Sinica 27: 2355–2364.Google Scholar
  41. Lin, S. J., L. J. He, P. S. Huang & B. P. Han, 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Chinese Journal of Ecologic Science 24: 9–11.Google Scholar
  42. Lin, Z. W., T. Yin, Z. Tan, B. P. Han, Y. C. Feng, B. X. Tan & X. M. Zheng, 2006. Sediment deposition and its trapping nitrogen and phosphorus in Dajingshan reservoir. Journal of Anhui Agricultural Sciences 34: 3441–3443.Google Scholar
  43. Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  44. Meerhoff, M., J. M. Clemente, F. T. De Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  45. Melack, J. M., 1979. Temporal variability of phytoplankton in tropical lakes. Oecologia 44: 1–7.CrossRefGoogle Scholar
  46. Mihaljević, M., D. Špoljarić, F. Stević & T. Žuna Pfeiffer, 2013. Assessment of flood-induced changes of phytoplankton along a river–floodplain system using the morpho-functional approach. Environmental Monitoring and Assessment 621: 1–19.Google Scholar
  47. Moss, B., E. Jeppesen, M. Søndergaard, T. L. Lauridsen & Z. Liu, 2013. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710: 3–21.CrossRefGoogle Scholar
  48. Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506–509: 13–21.CrossRefGoogle Scholar
  49. Naselli-Flores, L., 2014. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems. The case of Lake Arancio, Sicily, Italy. Inland Waters 4: 15–26.CrossRefGoogle Scholar
  50. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.CrossRefGoogle Scholar
  51. Naselli-Flores, L. & R. Barone, 2011. Invited review-fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.CrossRefGoogle Scholar
  52. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. Vegan: Community Ecology Package. R Package Version 2.0-10. http://cran.r-project.org/web/packages/vegan/.
  53. Padisák, J., J. Köhler & S. Hoeg, 1999. Effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology. Backhuys Publishers, Leiden: 411–424.Google Scholar
  54. Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  55. Paerl, H. W., R. S. Fulton, P. H. Moisander & J. Dyble, 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Scientific World Journal 1: 76–113.CrossRefPubMedGoogle Scholar
  56. Paerl, H. W., N. S. Hall & E. S. Calandrino, 2011a. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409: 1739–1745.CrossRefPubMedGoogle Scholar
  57. Paerl, H. W., H. Xu, M. J. McCarthy, G. Zhu, B. Qin, Y. Li & W. S. Gardner, 2011b. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Research 45: 1973–1983.CrossRefPubMedGoogle Scholar
  58. Petar, Ž., G. U. Marija, K. B. Koraljka, P. Anđelka & J. Padisák, 2014. Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740(1): 147–166.CrossRefGoogle Scholar
  59. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  60. Reddy, M. S. & N. Char, 2006. Management of lakes in India. Lakes & Reservoirs: Research & Management 11: 227–237.CrossRefGoogle Scholar
  61. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe: 371.Google Scholar
  62. Reynolds, C. S. 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge: 535 pp.Google Scholar
  63. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.CrossRefGoogle Scholar
  64. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  65. Rigosi, A. & F. J. Rueda, 2012. Hydraulic control of short-term successional changes in the phytoplankton assemblage in stratified reservoirs. Ecological Engineering 44: 216–226.CrossRefGoogle Scholar
  66. Rodríguez Gallego, L. R., N. Mazzeo, J. Gorga, M. Meerhoff, J. Clemente, C. Kruk, F. Scasso, G. Lacerot, J. García & F. Quintans, 2004. The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes & Reservoirs: Research & Management 9: 203–215.CrossRefGoogle Scholar
  67. Salmaso, N., 1996. Seasonal variation in the composition and rate of change of the phytoplankton community in a deep subalpine lake (Lake Garda, Northern Italy). An application of nonmetric multidimensional scaling and cluster analysis. Hydrobiologia 337: 49–68.CrossRefGoogle Scholar
  68. Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  69. Salmaso, N. & A. Zignin, 2010. At the extreme of physical gradients: phytoplankton in highly flushed, large rivers. Hydrobiologia 639: 21–36.CrossRefGoogle Scholar
  70. Segura, A. M., C. Kruk, D. Calliari & H. Fort, 2013. Use of a morphology-based functional approach to model phytoplankton community succession in a shallow subtropical lake. Freshwater Biology 58: 504–512.CrossRefGoogle Scholar
  71. Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24(4): 201–207.CrossRefGoogle Scholar
  72. Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) Model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.CrossRefGoogle Scholar
  73. Sukenik, A., R. Eshkol, A. Livne, O. Hadas, M. Rom, D. Tchernov, A. Vardi & K. Aaron, 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (Cyanobacteria): a novel allelopathic mechanism. Limnology and Oceanography 47: 1656–1663.CrossRefGoogle Scholar
  74. Tolotti, M., A. Boscaini & N. Salmaso, 2010. Comparative analysis of phytoplankton patterns in two modified lakes with contrasting hydrological features. Aquatic Sciences – Research Across Boundaries 72: 213–226.CrossRefGoogle Scholar
  75. Verdonschot, P., B. M. Spears, C. K. Feld, S. Brucet, H. Keizer-Vlek, A. Borja, M. Elliott, M. Kernan & R. K. Johnson, 2013. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704: 453–474.CrossRefGoogle Scholar
  76. Verspagen, J. M. H., J. Passarge, K. D. Jöhnk, P. M. Visser, L. Peperzak, P. Boers, H. J. Laanbroek & J. Huisman, 2006. Water management strategies against toxic Microcystis blooms in the Dutch Delta. Ecological Applications 16: 313–327.CrossRefPubMedGoogle Scholar
  77. Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of Waters: Monitoring, Assessment and Control. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control). Environment Directorate, OECD, Paris: 154 pp.Google Scholar
  78. Xu, F., S. E. Jørgensen, S. Tao & B. Li, 1999. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao). Ecological Modelling 117: 239–260.CrossRefGoogle Scholar
  79. Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of HydrobiologyJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou ProvinceGuizhou Normal UniversityGuiyangPeople’s Republic of China
  3. 3.Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Section of Botany and Plant EcologyUniversity of PalermoPalermoItaly
  4. 4.Department of LimnologyUniversity of PannoniaVeszprémHungary
  5. 5.MTA-PE Limnoecology Research GroupVeszprémHungary
  6. 6.Sustainable Agro-Ecosystems and Bioresources Department, IASMA Research and Innovation CentreFondazione E. Mach - Istituto Agrario di S. Michele all’AdigeSan Michele all’AdigeItaly

Personalised recommendations